On the spectral gap and the expansion of random simplicial complexes

Nikolaos Fountoulakis
University of Birmingham

Probabilistic Combinatorics Online 23-25 September 2020

The graph Laplace operator

Given a graph $G=(V, E)$, the (combinatorial) Laplace operator is defined as

$$
\Delta_{G}=D_{G}-A_{G}
$$

where $D_{G}=\operatorname{diag}(\operatorname{deg}(v))_{v \in V}$ and A_{G} is the adjacency matrix of G.

The graph Laplace operator

Let $\lambda(G)$ be the smallest positive eigenvalue of Δ_{G} : this is the spectral gap of Δ_{G}.

The graph Laplace operator

Let $\lambda(G)$ be the smallest positive eigenvalue of Δ_{G} : this is the spectral gap of Δ_{G}.
Alon and Milman (1985) showed that for any non-empty (proper) subset $A \subset V(G)$ we have

$$
\lambda(G) \leq \frac{n \cdot e(A, V \backslash A)}{|A||V \backslash A|}=: h(A ; G)
$$

The graph Laplace operator

Setting $h(G)=\min _{A: 0<|A| \leq|V| / 2} h(A ; G)$ one can complete the above inequality with a lower bound and get

$$
\frac{h^{2}(G)}{8 d_{\max }(G)} \leq \lambda(G) \leq h(G), \quad(\text { Cheeger inequalities })
$$

where $d_{\max }(G)$ is the maximum degree of G.

The graph Laplace operator

Setting $h(G)=\min _{A: 0<|A| \leq|V| / 2} h(A ; G)$ one can complete the above inequality with a lower bound and get

$$
\frac{h^{2}(G)}{8 d_{\max }(G)} \leq \lambda(G) \leq h(G), \quad(\text { Cheeger inequalities })
$$

where $d_{\text {max }}(G)$ is the maximum degree of G. In particular, the above inequality implies that

$$
\lambda(G) \leq \frac{|V(G)|}{|V(G)|-1} d_{\min }(G)
$$

where $d_{\min }(G)$ is the minimum degree of G.

The Laplace operator of a d-dimensional simplicial complex

Terminology

A simplicial complex \mathcal{K} on a vertex set V is a set of subsets of $V=\{1, \ldots, n\}$ that is downwards closed.

The Laplace operator of a d-dimensional simplicial complex

Terminology

A simplicial complex \mathcal{K} on a vertex set V is a set of subsets of $V=\{1, \ldots, n\}$ that is downwards closed.

It is d-dimensional, if the largest cardinality among these subsets is $d+1$.

The Laplace operator of a d-dimensional simplicial complex

Terminology

A simplicial complex \mathcal{K} on a vertex set V is a set of subsets of $V=\{1, \ldots, n\}$ that is downwards closed.

It is d-dimensional, if the largest cardinality among these subsets is $d+1$.

A subset $\sigma \in \mathcal{K}$ is called an r-dimensional face, if $|\sigma|=r+1$. It is also called an r-face.

The Laplace operator of a d-dimensional simplicial complex

Terminology
A simplicial complex \mathcal{K} on a vertex set V is a set of subsets of $V=\{1, \ldots, n\}$ that is downwards closed.

It is d-dimensional, if the largest cardinality among these subsets is $d+1$.

A subset $\sigma \in \mathcal{K}$ is called an r-dimensional face, if $|\sigma|=r+1$. It is also called an r-face.

We denote by $\mathcal{K}^{(r)}$ the set of r-dimensional faces.

The Laplace operator of a d-dimensional simplicial complex

Terminology

We shall consider orientations on the faces.

The Laplace operator of a d-dimensional simplicial complex

Terminology

We shall consider orientations on the faces.
If $\sigma=\left\{i_{0}, \ldots, i_{r}\right\}$ is an r-face, with $i_{0}<\cdots<i_{r}$, any even permutation of these will be a positive orientation any odd permutation will be a negative orientation.

The Laplace operator of a d-dimensional simplicial complex

Terminology

We shall consider orientations on the faces.
If $\sigma=\left\{i_{0}, \ldots, i_{r}\right\}$ is an r-face, with $i_{0}<\cdots<i_{r}$, any even permutation of these will be a positive orientation any odd permutation will be a negative orientation. Let $\mathcal{K}_{ \pm}^{(r)}$ be the set of oriented r-faces.

The Laplace operator of a d-dimensional simplicial complex

Terminology

We shall consider orientations on the faces.
If $\sigma=\left\{i_{0}, \ldots, i_{r}\right\}$ is an r-face, with $i_{0}<\cdots<i_{r}$, any even permutation of these will be a positive orientation any odd permutation will be a negative orientation. Let $\mathcal{K}_{ \pm}^{(r)}$ be the set of oriented r-faces.
We will consider the set of r-forms $\Omega^{(r)}$: all functions $f: \mathcal{K}_{ \pm}^{(r)} \rightarrow \mathbb{R}$ which are anti-symmetric:

$$
f(\sigma)=-f(\bar{\sigma}), \text { for any } \sigma \in \mathcal{K}_{ \pm}^{(r)}
$$

The Laplace operator of a d-dimensional simplicial complex

We will define two operators on these forms:

The Laplace operator of a d-dimensional simplicial complex

We will define two operators on these forms:
The boundary operator $\partial_{j}: \Omega^{(j)} \rightarrow \Omega^{(j-1)}$:

$$
\begin{aligned}
& \text { for } f \in \Omega^{(j)} \text { and } \sigma \in \mathcal{K}_{ \pm}^{(j-1)} \\
& \qquad\left(\partial_{j} f\right)(\sigma)=\sum_{v: v \sigma \in \mathcal{K}_{ \pm}^{(j)}} f(v \sigma),
\end{aligned}
$$

The Laplace operator of a d-dimensional simplicial complex

We will define two operators on these forms:
The boundary operator $\partial_{j}: \Omega^{(j)} \rightarrow \Omega^{(j-1)}$:

$$
\begin{aligned}
& \text { for } f \in \Omega^{(j)} \text { and } \sigma \in \mathcal{K}_{ \pm}^{(j-1)} \\
& \qquad\left(\partial_{j} f\right)(\sigma)=\sum_{v: v \sigma \in \mathcal{K}_{ \pm}^{(j)}} f(v \sigma),
\end{aligned}
$$

The coboundary operator $\delta_{j}: \Omega^{(j)} \rightarrow \Omega^{(j+1)}$:

$$
\begin{aligned}
& \text { for } f \in \Omega^{(j)} \text { and } \sigma=\left[v_{0}, \ldots, v_{j+1}\right] \\
& \qquad\left(\delta_{j} f\right)(\sigma)=\sum_{i=0}^{j+1}(-1)^{i} f\left(\sigma \backslash v_{i}\right)
\end{aligned}
$$

The Laplace operator of a d-dimensional simplicial complex

The Laplace operator $\Delta: \Omega^{(d-1)} \rightarrow \Omega^{(d-1)}$ of \mathcal{K} is defined as

$$
\Delta=\Delta^{+}+\Delta^{-}
$$

where

$$
\Delta^{+}=\partial_{d} \delta_{d-1} \quad(\text { the upper Laplacian })
$$

and

$$
\Delta^{-}=\delta_{d-2} \partial_{d-1} \quad \text { (the lower Laplacian) }
$$

The spectrum of \triangle

Define

$$
\lambda(\mathcal{K})=\min _{+} \operatorname{Spec}\left(\left.\Delta\right|_{\Omega^{(d-1)}}\right) .
$$

The spectrum of \triangle

Define

$$
\lambda(\mathcal{K})=\min _{+} \operatorname{Spec}\left(\left.\Delta\right|_{\Omega^{(d-1)}}\right) .
$$

But

$$
\Omega^{(d-1)}=\operatorname{Im} \delta_{d-2} \oplus \operatorname{Ker}_{d-1} \text { (Hodge decomposition) }
$$

and moreover

$$
\operatorname{Im} \delta_{d-2} \subset \operatorname{Ker} \delta_{d-1}
$$

The spectrum of \triangle

Define

$$
\lambda(\mathcal{K})=\min _{+} \operatorname{Spec}\left(\left.\Delta\right|_{\Omega^{(d-1)}}\right) .
$$

But

$$
\Omega^{(d-1)}=\operatorname{Im} \delta_{d-2} \oplus \operatorname{Ker}_{d-1} \text { (Hodge decomposition) }
$$

and moreover

$$
\operatorname{Im} \delta_{d-2} \subset \operatorname{Ker} \delta_{d-1}
$$

Thus, with $Z_{d-1}=\operatorname{Ker} \partial_{d-1}$ we have

$$
\lambda(\mathcal{K})=\min _{+} \operatorname{Spec}\left(\left.\Delta\right|_{Z_{d-1}}\right)=\min _{+} \operatorname{Spec}\left(\left.\Delta^{+}\right|_{Z_{d-1}}\right) .
$$

The spectrum of Δ

Define

$$
\lambda(\mathcal{K})=\min _{+} \operatorname{Spec}\left(\left.\Delta\right|_{\Omega^{(d-1)}}\right) .
$$

But

$$
\Omega^{(d-1)}=\operatorname{Im} \delta_{d-2} \oplus \operatorname{Ker}_{d-1} \text { (Hodge decomposition) }
$$

and moreover

$$
\operatorname{Im} \delta_{d-2} \subset \operatorname{Ker} \delta_{d-1}
$$

Thus, with $Z_{d-1}=\operatorname{Ker} \partial_{d-1}$ we have

$$
\lambda(\mathcal{K})=\min _{+} \operatorname{Spec}\left(\left.\Delta\right|_{Z_{d-1}}\right)=\min _{+} \operatorname{Spec}\left(\left.\Delta^{+}\right|_{Z_{d-1}}\right) .
$$

In what follows, we focus on the spectrum of $\Delta^{+}=\partial_{d} \delta_{d-1}$.

The Laplace operator of a d-dimensional simplicial complex

The upper Laplacian can be written as follows: for $f \in \Omega^{(d-1)}$ and $\sigma=\left[v_{0}, \ldots, v_{d-1}\right] \in Y_{ \pm}^{(d-1)}$ we have

$$
\left(\Delta^{+} f\right)(\sigma)=\operatorname{deg}(\sigma) f(\sigma)-\sum_{v: v \sigma \in \mathcal{K}_{ \pm}^{(d)}} \sum_{i=0}^{d-1}(-1)^{i} f\left(v \sigma \backslash v_{i}\right)
$$

where $\operatorname{deg}(\sigma)$ is the co-degree of σ in \mathcal{K} :

$$
\operatorname{deg}(\sigma)=\mid d \text {-faces containing } \sigma \mid
$$

The spectral gap of Δ^{+}and a Cheeger inequality

We define

$$
\begin{equation*}
h(\mathcal{K})=\min _{\left|\mathcal{K}^{(0)}\right|=A_{0} \uplus \cdots \uplus A_{d}} \frac{n \cdot\left|F\left(A_{0}, \ldots, A_{d}\right)\right|}{\prod_{i=0}^{d}\left|A_{i}\right|}, \tag{1}
\end{equation*}
$$

where the minimum is taken over all partitions of $\mathcal{K}^{(0)}=V$ into $d+1$ non-empty parts A_{0}, \ldots, A_{d} and $F\left(A_{0}, \ldots, A_{d}\right)$ is the set of d-faces with exactly one vertex in each one of the parts.

The spectral gap of Δ^{+}and a Cheeger inequality

We define

$$
\begin{equation*}
h(\mathcal{K})=\min _{\left|\mathcal{K}^{(0)}\right|=A_{0} \uplus \cdots \uplus A_{d}} \frac{n \cdot\left|F\left(A_{0}, \ldots, A_{d}\right)\right|}{\prod_{i=0}^{d}\left|A_{i}\right|}, \tag{1}
\end{equation*}
$$

where the minimum is taken over all partitions of $\mathcal{K}^{(0)}=V$ into $d+1$ non-empty parts A_{0}, \ldots, A_{d} and $F\left(A_{0}, \ldots, A_{d}\right)$ is the set of d-faces with exactly one vertex in each one of the parts.

The following theorem was proved by Parzanchevski, Rosenthal, and Tessler (2016):

Theorem
For a finite complex \mathcal{K} with a complete skeleton,

$$
\lambda(\mathcal{K}) \leq h(\mathcal{K})
$$

The spectral gap of Δ^{+}and a Cheeger inequality

One would hope that the would be completed into

$$
\frac{h(\mathcal{K})^{2}}{d_{\max }(\mathcal{K})} \leq \lambda(\mathcal{K}) \leq h(\mathcal{K})
$$

but this is NOT true.

The spectral gap of Δ^{+}and a Cheeger inequality

One would hope that the would be completed into

$$
\frac{h(\mathcal{K})^{2}}{d_{\max }(\mathcal{K})} \leq \lambda(\mathcal{K}) \leq h(\mathcal{K})
$$

but this is NOT true.
Instead, Parzanchevski, Rosenthal, and Tessler conjecture that

$$
\frac{h(\mathcal{K})^{2}}{C}-c \leq \lambda(\mathcal{K})
$$

where \mathcal{C} depends on the maximum co-degree of \mathcal{K}.

The Linial-Meshulam random complex

Let $Y(n, p ; d)$ denote the random d-dimensional simplicial complex on $[n]:=\{1, \ldots, n\}$ where

The Linial-Meshulam random complex

Let $Y(n, p ; d)$ denote the random d-dimensional simplicial complex on $[n]:=\{1, \ldots, n\}$ where

1. all possible faces of dimension up to $d-1$ are present,

The Linial-Meshulam random complex

Let $Y(n, p ; d)$ denote the random d-dimensional simplicial complex on $[n]:=\{1, \ldots, n\}$ where

1. all possible faces of dimension up to $d-1$ are present,
2. each subset of $[n]$ of size $d+1$ becomes a d-face with probability $p=p(n) \in[0,1]$, independently of every other subset of size $d+1$.

The Linial-Meshulam random complex

Let $Y(n, p ; d)$ denote the random d-dimensional simplicial complex on $[n]:=\{1, \ldots, n\}$ where

1. all possible faces of dimension up to $d-1$ are present,
2. each subset of $[n]$ of size $d+1$ becomes a d-face with probability $p=p(n) \in[0,1]$, independently of every other subset of size $d+1$.

For $d=1$, this includes the binomial random graph $G(n, p)$.

The Linial-Meshulam random complex

Linial and Meshulam showed that $Y(n, p ; 2)$ undergoes a sharp transition which generalises the connectivity transition of $G(n, p)$.

Theorem (Linial and Meshulam 2006)
Let $H^{1}\left(Y(n, p ; 2) ; \mathbb{Z}_{2}\right)$ be the first cohomology group of $Y(n, p ; 2)$. Then

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(H^{1}\left(Y(n, p ; d) ; \mathbb{Z}_{2}\right) \text { is trivial }\right)= \begin{cases}1, & \text { if } p=\frac{2 \log n+\omega(n)}{n} \\ 0, & \text { if } p=\frac{2 \log n-\omega(n)}{n}\end{cases}
$$

where $\omega(n) \rightarrow \infty$ as $n \rightarrow \infty$.

The Linial-Meshulam random complex

This was generalised in a number of papers.
Theorem (Meshulam and Wallach 2008, Gundert and Wagner, 2016)

Let $H^{d-1}(Y(n, p ; d) ; R)$ be the first cohomology group of $Y(n, p ; d)$. Then

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(H^{1}(Y(n, p ; d) ; R) \text { is trivial }\right)= \begin{cases}1, & \text { if } p=\frac{d \log n+\omega(n)}{n} \\ 0, & \text { if } p=\frac{d \log n-\omega(n)}{n},\end{cases}
$$

where $\omega(n) \rightarrow \infty$ as $n \rightarrow \infty$.

The cohomology group H^{d-1}

This define over the set of $d-1$-forms $\Omega^{(d-1)}$ as

$$
H^{d-1}(\mathcal{K})=\operatorname{Ker} \delta_{\mathrm{d}-1} / \operatorname{Im} \delta_{d-2}
$$

The cohomology group H^{d-1}

This define over the set of $d-1$-forms $\Omega^{(d-1)}$ as

$$
H^{d-1}(\mathcal{K})=\operatorname{Ker} \delta_{\mathrm{d}-1} / \operatorname{Im} \delta_{d-2} .
$$

When $n p=d \log n-\omega(n)$, then w.h.p. there is a $d-1$-face of co-degree 0 .

The spectral gap and the Cheeger constant of $Y(n, p ; d)$

Let $\delta(Y(n, p ; d))$ be the minimum co-degree among the $d-1$-faces of $Y(n, p ; d)$. We showed the following.

Theorem (F. and Przykucki, 2020+)
For $d \geq 2$, let $p=\frac{(1+\varepsilon) d \log n}{n}$, where $\varepsilon>0$ is fixed. There exists $C>0$ such that w.h.p.

$$
\begin{aligned}
\delta(Y(n, p ; d))-C \sqrt{\log n} & \leq \lambda(Y(n, p ; d)) \leq h(Y(n, p ; d)) \\
& \leq(1+O(1 / n)) \delta(Y(n, p ; d))
\end{aligned}
$$

Furthermore, w.h.p.

$$
\mid \delta(Y(n, p ; d))-(1+\varepsilon) \text { ad } \log n \mid<C \sqrt{\log n}
$$

where $a=a(\varepsilon)$ is the solution to $\varepsilon=(1+\varepsilon)(1-\log a) a$.

The spectral gap and the Cheeger constant of $Y(n, p ; d)$

The minimum co-degree This proof uses large deviations estimates for the binomial distribution and a first moment argument - it extends an argument of Kolokolnikov, Osting and von Brecht (2014) about the minimum degree of $G(n, p)$ in the corresponding regime.

The spectral gap and the Cheeger constant of $Y(n, p ; d)$

The inequality $\lambda(Y(n, p ; d)) \leq h(Y(n, p ; d))$ is just the theorem of Parzanchevski, Rosenthal, and Tessler.

The spectral gap and the Cheeger constant of $Y(n, p ; d)$

The inequality $\lambda(Y(n, p ; d)) \leq h(Y(n, p ; d))$ is just the theorem of Parzanchevski, Rosenthal, and Tessler.

The inequality $h(Y(n, p ; d)) \leq(1+O(1 / n)) \delta(Y(n, p ; d))$ follows from taking the partition:
if $\sigma=\left\{a_{0}, \ldots, a_{d-1}\right\}$ is a $d-1$-face with the minimum co-degree, then taking $A_{i}=\left\{a_{i}\right\}$ for $0 \leq i \leq d-1$ and $A_{d}=[n] \backslash A$ gives us a partition with $\left|F\left(A_{0}, A_{1}, \ldots, A_{d}\right)\right|=\delta(Y(n, p ; d))$. Thus,

$$
\begin{aligned}
h(Y(n, p ; d)) & =\min _{[n]=A_{0} \uplus \cdots \uplus A_{d}} \frac{n \cdot\left|F\left(A_{0}, \ldots, A_{d}\right)\right|}{\prod_{i=0}^{d}\left|A_{i}\right|} \\
& \leq(1+O(1 / n)) \delta(Y(n, p ; d)) .
\end{aligned}
$$

The link graph

Figure: The link graph of face τ in a 2-dimensional complex

The link graph

Figure: The link graph of face τ in a 2-dimensional complex

The sprectral gap of $Y(n, p ; d)$ - lower bound

Lower bound on $\lambda\left(\Delta^{+}\right)$
We will show that w.h.p.

$$
\inf _{0 \neq f \in Z_{d-1}} \frac{\left\langle\Delta^{+} f, f\right\rangle}{\langle f, f\rangle} \geq \delta(Y(n, p ; d))-O(\sqrt{\log n})
$$

The sprectral gap of $Y(n, p ; d)$ - lower bound

Lower bound on $\lambda\left(\Delta^{+}\right)$
We will show that w.h.p.

$$
\inf _{0 \neq f \in Z_{d-1}} \frac{\left\langle\Delta^{+} f, f\right\rangle}{\langle f, f\rangle} \geq \delta(Y(n, p ; d))-O(\sqrt{\log n}) .
$$

We use the following decomposition of the Laplace operator of a complex X that is due to Garland 1973

$$
\Delta^{+}=\sum_{\tau \in X^{(d-2)}} \Delta_{\tau}^{+}-(d-1) D
$$

where $(D f)(\sigma)=\operatorname{deg}(\sigma) f(\sigma)$ and

$$
\Delta_{\tau}^{+}=D_{\mathrm{lk} \tau}-A_{\mathrm{lk} \tau}
$$

is the Laplace operator of the link graph $1 \mathrm{k} \tau$ of τ in X.

The sprectral gap of $Y(n, p ; d)$ - lower bound

Lower bound on $\lambda\left(\Delta^{+}\right)$

We will show that w.h.p.

$$
\inf _{0 \neq f \in Z_{d-1}} \frac{\left\langle\Delta^{+} f, f\right\rangle}{\langle f, f\rangle} \geq \delta(Y(n, p ; d))-O(\sqrt{\log n})
$$

We show that for any $f \in Z_{d-1}$ we can write:

$$
\left\langle\Delta^{+} f, f\right\rangle=\sum_{\tau \in X^{(d-2)}}\left(\frac{1}{d}\left\langle D_{\mathrm{lk} \tau} f_{\tau}, f_{\tau}\right\rangle-\left\langle A_{\mathrm{lk} \tau} f_{\tau}, f_{\tau}\right\rangle\right)
$$

where

$$
f_{\tau}:(\mathrm{lk} \tau)^{(0)} \rightarrow \mathbb{R} \text { as } f_{\tau}(v)=f(v \tau)
$$

The sprectral gap of $Y(n, p ; d)$ - lower bound

Lower bound on $\lambda\left(\Delta^{+}\right)$

We will show that w.h.p.

$$
\inf _{0 \neq f \in Z_{d-1}} \frac{\left\langle\Delta^{+} f, f\right\rangle}{\langle f, f\rangle} \geq \delta(Y(n, p ; d))-O(\sqrt{\log n})
$$

We show that

$$
\frac{1}{d} \sum_{\tau \in X^{(d-2)}}\left\langle D_{\mathrm{lk} \tau} f_{\tau}, f_{\tau}\right\rangle \geq \delta(X)\langle f, f\rangle
$$

The spectral gap of $Y(n, p ; d)$

Now, if $X=Y(n, p ; d)$, then for any $\tau \in Y^{(d-2)}(n, p ; d)$ the link graph $\mathrm{lk} \tau$ is a random graph distributed as $G(n, p)$. Hence, $A_{\mathrm{lk} \tau}$ is the adjacency matrix of a $G(n, p)$ distributed random graph.

The spectral gap of $Y(n, p ; d)$

Now, if $X=Y(n, p ; d)$, then for any $\tau \in Y^{(d-2)}(n, p ; d)$ the link graph $\mathrm{lk} \tau$ is a random graph distributed as $G(n, p)$. Hence, $A_{\mathrm{lk} \tau}$ is the adjacency matrix of a $G(n, p)$ distributed random graph.

Also, the assumption that $f \in Z_{d-1}=\operatorname{Ker}_{d-1}$ translates into $<f_{\tau}, \mathbf{1}>=0$, for all $\tau \in Y^{(d-2)}$.

The spectral gap of $Y(n, p ; d)$

Now, if $X=Y(n, p ; d)$, then for any $\tau \in Y^{(d-2)}(n, p ; d)$ the link graph $\mathrm{lk} \tau$ is a random graph distributed as $G(n, p)$. Hence, $A_{\mathrm{lk} \tau}$ is the adjacency matrix of a $G(n, p)$ distributed random graph.

Also, the assumption that $f \in Z_{d-1}=\operatorname{Ker}_{d-1}$ translates into $<f_{\tau}, \mathbf{1}>=0$, for all $\tau \in Y^{(d-2)}$.

The spectral gap of $Y(n, p ; d)$

Now, if $X=Y(n, p ; d)$, then for any $\tau \in Y^{(d-2)}(n, p ; d)$ the link graph $\mathrm{lk} \tau$ is a random graph distributed as $G(n, p)$. Hence, $A_{\mathrm{lk} \tau}$ is the adjacency matrix of a $G(n, p)$ distributed random graph.

Also, the assumption that $f \in Z_{d-1}=\operatorname{Ker}_{d-1}$ translates into $<f_{\tau}, \mathbf{1}>=0$, for all $\tau \in Y^{(d-2)}$.

These random graphs are not independent, but a result of Feige and Ofek 2005 implies that with probability $1-o\left(n^{-(d-1)}\right)$ we have

$$
\left\langle A_{\mathrm{lk} \tau} f_{\tau}, f_{\tau}\right\rangle \leq C \sqrt{n p}=O(\sqrt{\log n})
$$

The spectral gap of $Y(n, p ; d)$

The union bound over all $O\left(n^{d-1}\right)$ choices of $\tau \in Y^{(d-2)}(n, p ; d)$ implies that w.h.p. for all $f \in Z_{d-1}$

$$
\left\langle\Delta^{+} f, f\right\rangle \geq(\delta(Y(n, p ; d))-O(\sqrt{\log n}))\langle f, f\rangle
$$

Random walks on $Y(n, p ; d)$

Let $Y=Y(n, p ; d)$. We consider a random walk on $Y^{(d-1)}$.

Random walks on $Y(n, p ; d)$

Let $Y=Y(n, p ; d)$. We consider a random walk on $Y^{(d-1)}$.
For distinct $\sigma, \sigma^{\prime} \in Y^{(d-1)}$, we write $\sigma \sim \sigma^{\prime}$, if there exists $\rho \in Y^{(d)}$ such that $\sigma, \sigma^{\prime} \subset \rho$.

Random walks on $Y(n, p ; d)$

Let $Y=Y(n, p ; d)$. We consider a random walk on $Y^{(d-1)}$.
For distinct $\sigma, \sigma^{\prime} \in Y^{(d-1)}$, we write $\sigma \sim \sigma^{\prime}$, if there exists $\rho \in Y^{(d)}$ such that $\sigma, \sigma^{\prime} \subset \rho$.
If (X_{0}, X_{1}, \ldots) denotes this Markov chain, then for any $n \geq 1$ the transition probabilities are

$$
\mathbb{P}\left(X_{n}=\sigma^{\prime} \mid X_{n-1}=\sigma\right)=\left\{\begin{array}{ll}
\frac{1}{d \cdot \operatorname{deg}(\sigma)} & \text { if } \sigma \sim \sigma^{\prime} \\
0 & \text { otherwise }
\end{array} .\right.
$$

Random walks on $Y(n, p ; d)$

In a more general setting, one may consider a γ-lazy version of this random walk, for $\gamma \in(0,1)$, where

$$
\mathbb{P}\left(X_{n}=\sigma \mid X_{n-1}=\sigma\right)=\gamma
$$

and for $\sigma \sim \sigma^{\prime}$

$$
\mathbb{P}\left(X_{n}=\sigma^{\prime} \mid X_{n-1}=\sigma\right)=\frac{1-\gamma}{d \cdot \operatorname{deg}(\sigma)}
$$

Random walks on $Y(n, p ; d)$

In a more general setting, one may consider a γ-lazy version of this random walk, for $\gamma \in(0,1)$, where

$$
\mathbb{P}\left(X_{n}=\sigma \mid X_{n-1}=\sigma\right)=\gamma
$$

and for $\sigma \sim \sigma^{\prime}$

$$
\mathbb{P}\left(X_{n}=\sigma^{\prime} \mid X_{n-1}=\sigma\right)=\frac{1-\gamma}{d \cdot \operatorname{deg}(\sigma)}
$$

The stationary distribution on $Y^{(d-1)}$, denoted by π, is such that $\pi(\sigma)$ for any $\sigma \in Y^{(d-1)}$ we have

$$
\pi(\sigma)=\frac{\operatorname{deg}(\sigma)}{(d+1) \cdot\left|Y^{(d)}\right|}
$$

Random walks on $Y(n, p ; d)$

A measure of the speed of mixing is the conductance of this Markov chain which we denote by Φ_{Y}.

Random walks on $Y(n, p ; d)$

A measure of the speed of mixing is the conductance of this Markov chain which we denote by Φ_{Y}.
For any non-empty subset $S \subset Y^{(d-1)}$ we define

$$
\Phi_{Y}(S)=\frac{Q(S, \bar{S})}{\pi(S)}
$$

where $\bar{S}=Y^{(d-1)} \backslash S$ and $Q(S, \bar{S})=\sum_{\sigma \in S} \sum_{\sigma^{\prime} \in \bar{S}: \sigma^{\prime} \sim \sigma} \pi(\sigma) \cdot \frac{1}{d \cdot \operatorname{deg}(\sigma)}$ and $\pi(S)=\sum_{\sigma \in S} \pi(\sigma)$.

Random walks on $Y(n, p ; d)$

A measure of the speed of mixing is the conductance of this Markov chain which we denote by Φ_{Y}.
For any non-empty subset $S \subset Y^{(d-1)}$ we define

$$
\Phi_{Y}(S)=\frac{Q(S, \bar{S})}{\pi(S)}
$$

where $\bar{S}=Y^{(d-1)} \backslash S$ and
$Q(S, \bar{S})=\sum_{\sigma \in S} \sum_{\sigma^{\prime} \in \bar{S}: \sigma^{\prime} \sim \sigma} \pi(\sigma) \cdot \frac{1}{d \cdot \operatorname{deg}(\sigma)}$ and
$\pi(S)=\sum_{\sigma \in S} \pi(\sigma)$.
The conductance Φ_{Y} is defined as

$$
\Phi_{Y}=\min _{S \subset Y^{(d-1):}: 0<\pi(S) \leq 1 / 2} \Phi_{Y}(S)
$$

Random walks on $Y(n, p ; d)$

We prove that w.h.p. Φ_{Y} is bounded away from 0 .
Theorem (F. and Przykucki 2020+)
Let $Y=Y(n, p ; d)$ where $n p=(1+\varepsilon) d \log n$ and $\varepsilon>0$ is fixed.
There exists $\delta>0$ such that w.h.p.

$$
\Phi_{Y}>\delta .
$$

The conductance of $Y(n, p ; d)$

Given $S \subset Y^{(d-1)}$ let

$$
\begin{gathered}
\partial^{+} S=\left\{\rho \subset Y^{(d)}: \text { there exists } \sigma \in S \text { such that } \sigma \subset \rho\right\} . \\
\text { and } B_{S}=\left\{\sigma \in \partial^{+} S: \partial \sigma \subset S\right\}
\end{gathered}
$$

The conductance of $Y(n, p ; d)$

Given $S \subset Y^{(d-1)}$ let

$$
\begin{gathered}
\partial^{+} S=\left\{\rho \subset Y^{(d)}: \text { there exists } \sigma \in S \text { such that } \sigma \subset \rho\right\} . \\
\text { and } B_{S}=\left\{\sigma \in \partial^{+} S: \partial \sigma \subset S\right\}
\end{gathered}
$$

We show that

$$
Q(S, \bar{S}) \geq \frac{1}{d(d+1) \cdot\left|Y^{(d)}\right|} \cdot\left|\partial^{+} S \backslash B_{S}\right| .
$$

and

$$
\pi(S)=\frac{\sum_{\sigma \in S} \operatorname{deg}(\sigma)}{d \cdot\left|Y^{(d)}\right|} \leq \frac{d \cdot\left|\partial^{+} S\right|}{(d+1) \cdot\left|Y^{(d)}\right|}<\frac{\left|\partial^{+} S\right|}{\left|Y^{(d)}\right|}
$$

whereby

The conductance of $Y(n, p ; d)$

Given $S \subset Y^{(d-1)}$ let

$$
\begin{gathered}
\partial^{+} S=\left\{\rho \subset Y^{(d)}: \text { there exists } \sigma \in S \text { such that } \sigma \subset \rho\right\} . \\
\text { and } B_{S}=\left\{\sigma \in \partial^{+} S: \partial \sigma \subset S\right\} \\
\Phi_{Y} \geq \frac{1}{d(d+1)} \cdot \min _{S \subset Y^{(d-1)}: 0<\pi(S) \leq \frac{1}{2}} \frac{\left|\partial^{+} S \backslash B_{S}\right|}{\left|\partial^{+} S\right|} .
\end{gathered}
$$

The conductance of $Y(n, p ; d)$

We apply a union bound in order to bound from below $\frac{\left|\partial^{+} S \backslash B_{S}\right|}{\left|\partial^{+} S\right|}$ for all $S \subset Y^{(d-1)}$ with $0<\pi(S) \leq \frac{1}{2}$.

The conductance of $Y(n, p ; d)$

We apply a union bound in order to bound from below $\frac{\left|\partial^{+} S \backslash B_{S}\right|}{\left|\partial^{+} S\right|}$ for all $S \subset Y^{(d-1)}$ with $0<\pi(S) \leq \frac{1}{2}$.
Given $S \subset Y^{(d-1)}$ and $1 \leq i \leq d+1$, let

$$
F_{i}(S)=\left\{\rho \in \partial^{+} S:|\partial \rho \cap S|=i\right\}
$$

and set $f_{i}(S)=\left|F_{i}(S)\right|$.

The conductance of $Y(n, p ; d)$

We apply a union bound in order to bound from below $\frac{\left|\partial^{+} S \backslash B_{S}\right|}{\left|\partial^{+} S\right|}$ for all $S \subset Y^{(d-1)}$ with $0<\pi(S) \leq \frac{1}{2}$.
Given $S \subset Y^{(d-1)}$ and $1 \leq i \leq d+1$, let

$$
F_{i}(S)=\left\{\rho \in \partial^{+} S:|\partial \rho \cap S|=i\right\}
$$

and set $f_{i}(S)=\left|F_{i}(S)\right|$.
Denoting $|S|=m$, by double counting, we have that

$$
\sum_{i=1}^{d+1} i f_{i}(S)=m(n-d)
$$

The conductance of $Y(n, p ; d)$

We apply a union bound in order to bound from below $\frac{\left|\partial^{+} S \backslash B_{S}\right|}{\left|\partial^{+} S\right|}$ for all $S \subset Y^{(d-1)}$ with $0<\pi(S) \leq \frac{1}{2}$.
Given $S \subset Y^{(d-1)}$ and $1 \leq i \leq d+1$, let

$$
F_{i}(S)=\left\{\rho \in \partial^{+} S:|\partial \rho \cap S|=i\right\}
$$

and set $f_{i}(S)=\left|F_{i}(S)\right|$.
Note that

$$
f_{d+1}(S)=K_{d+1}^{(d)}(S)
$$

in other words...

$$
f_{d+1}(S)=\left|B_{S}\right| .
$$

The conductance of $Y(n, p ; d)$

To bound $K_{d+1}^{(d)}(S)$ we use a weaker form of the Kruskal-Katona theorem.

Theorem

Suppose $r \geq 1$ and G is an r-uniform hypergraph with

$$
m=\binom{x_{m}}{r}=\frac{x_{m}\left(x_{m}-1\right) \ldots\left(x_{m}-r+1\right)}{r!}
$$

hyperedges, for some real number $x_{m} \geq r$. Then $K_{r+1}^{(r)}(G) \leq\binom{ x_{m}}{r+1}$, with equality if and only if x_{m} is an integer and $G=K_{x_{m}}^{(r)}$.

The conductance of $Y(n, p ; d)$

This implies that

$$
\frac{f_{d+1}(S)}{n m} \leq \frac{1}{n} \frac{\binom{x_{m}}{d+1}}{\binom{x_{m}}{d}}=\frac{x_{m}-d}{n(d+1)} \leq \frac{(m d!)^{1 / d}}{n(d+1)}
$$

The conductance of $Y(n, p ; d)$

This implies that

$$
\frac{f_{d+1}(S)}{n m} \leq \frac{1}{n} \frac{\binom{x_{m}}{d+1}}{\binom{x_{m}}{d}}=\frac{x_{m}-d}{n(d+1)} \leq \frac{(m d!)^{1 / d}}{n(d+1)}
$$

Since $\sum_{i=1}^{d+1} i f_{i}(S)=m(n-d)$, we obtain

$$
\sum_{i=1}^{d} f_{i}(S) \geq \frac{n m}{d}\left(1-\frac{d}{n}-\frac{(m d!)^{1 / d}}{n}\right)=\frac{n m}{d}\left(1-\frac{(m d!)^{1 / d}}{n}-o(1)\right)
$$

The conductance of $Y(n, p ; d)$

Thus, for example, if $m=o\left(n^{d}\right)$, then

$$
\left|\left(\partial^{+} S \backslash B_{S}\right) \cap Y^{(d)}\right| \sim \operatorname{Bin}\left(\frac{n m}{d}(1-o(1)), p\right)
$$

which is concentrated around $(1+\varepsilon) m \log n$, since $n p=(1+\varepsilon) d \log n$,

The conductance of $Y(n, p ; d)$

Thus, for example, if $m=o\left(n^{d}\right)$, then

$$
\left|\left(\partial^{+} S \backslash B_{S}\right) \cap Y^{(d)}\right| \sim \operatorname{Bin}\left(\frac{n m}{d}(1-o(1)), p\right)
$$

which is concentrated around $(1+\varepsilon) m \log n$, since $n p=(1+\varepsilon) d \log n$, and

$$
\left|B_{S}\right|=f_{d+1}(S) \leq m n \frac{(m d!)^{1 / d}}{(d+1) n}=o(n m)
$$

whereby

$$
\left|B_{S} \cap Y^{(d)}\right| \sim \operatorname{Bin}(o(n m), p)
$$

which is concentrated around $o(m \log n)$.

The conductance of $Y(n, p ; d)$

So for a suitable $k_{0}=o(n m)$ we have

$$
\begin{aligned}
& \mathbb{P}\left(\left|\left(\partial^{+} S \backslash B_{S}\right) \cap Y^{(d)}\right| \geq\left|\partial^{+} S\right| / 2\right) \\
& \quad \geq \mathbb{P}\left(\left|B_{S} \cap Y^{(d)}\right| \leq k_{0} \text { and }\left|\left(\partial^{+} S \backslash B_{S}\right) \cap Y^{(d)}\right| \geq k_{0}\right) \\
& \quad \geq 1-\exp (-(1-o(1))(1+\varepsilon) m \log n) .
\end{aligned}
$$

The conductance of $Y(n, p ; d)$

So for a suitable $k_{0}=o(n m)$ we have

$$
\begin{aligned}
& \mathbb{P}\left(\left|\left(\partial^{+} S \backslash B_{S}\right) \cap Y^{(d)}\right| \geq\left|\partial^{+} S\right| / 2\right) \\
& \quad \geq \mathbb{P}\left(\left|B_{S} \cap Y^{(d)}\right| \leq k_{0} \text { and }\left|\left(\partial^{+} S \backslash B_{S}\right) \cap Y^{(d)}\right| \geq k_{0}\right) \\
& \quad \geq 1-\exp (-(1-o(1))(1+\varepsilon) m \log n) .
\end{aligned}
$$

But the number of tightly connected sets of size m is estimated to being at most

$$
4^{m}(d n)^{m}=\exp ((1+o(1)) m \log n) .
$$

and the union bound works in this case...

Thank you!

