On the spectral gap and the expansion of random simplicial complexes

Nikolaos Fountoulakis University of Birmingham

Probabilistic Combinatorics Online 23-25 September 2020

(4月) (4日) (4日)

Given a graph G = (V, E), the (combinatorial) Laplace operator is defined as

$$\Delta_G=D_G-A_G,$$

where $D_G = \operatorname{diag}(\operatorname{deg}(v))_{v \in V}$ and A_G is the adjacency matrix of G.

The Laplace operator Random walks and expansion

The graph Laplace operator

Let $\lambda(G)$ be the smallest positive eigenvalue of Δ_G : this is the *spectral gap* of Δ_G .

イロト イポト イヨト イヨト

Let $\lambda(G)$ be the smallest positive eigenvalue of Δ_G : this is the *spectral gap* of Δ_G . Alon and Milman (1985) showed that for any non-empty (proper) subset $A \subset V(G)$ we have

$$\lambda(G) \leq \frac{n \cdot e(A, V \setminus A)}{|A||V \setminus A|} =: h(A; G).$$

(4回) (日) (日)

Setting $h(G) = \min_{A : 0 < |A| \le |V|/2} h(A; G)$ one can complete the above inequality with a lower bound and get

$$rac{h^2(G)}{8d_{\sf max}(G)} \leq \lambda(G) \leq h(G), \hspace{0.2cm} ext{(Cheeger inequalities)}$$

where $d_{\max}(G)$ is the maximum degree of G.

- 4 同 6 4 日 6 4 日 6

Setting $h(G) = \min_{A : 0 < |A| \le |V|/2} h(A; G)$ one can complete the above inequality with a lower bound and get

$$rac{h^2(G)}{8d_{\sf max}(G)} \leq \lambda(G) \leq h(G), \hspace{0.2cm} ext{(Cheeger inequalities)}$$

where $d_{\max}(G)$ is the maximum degree of G. In particular, the above inequality implies that

$$\lambda(G) \leq \frac{|V(G)|}{|V(G)|-1} d_{\min}(G),$$

where $d_{\min}(G)$ is the minimum degree of G.

- 4 回 2 - 4 □ 2 - 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □

Terminology

A simplicial complex \mathcal{K} on a vertex set V is a set of subsets of $V = \{1, \ldots, n\}$ that is downwards closed.

・ 同 ト ・ ヨ ト ・ ヨ ト

Terminology

A simplicial complex \mathcal{K} on a vertex set V is a set of subsets of $V = \{1, \ldots, n\}$ that is downwards closed.

It is *d*-dimensional, if the largest cardinality among these subsets is d + 1.

- 4 同 6 4 日 6 4 日 6

Terminology

A simplicial complex \mathcal{K} on a vertex set V is a set of subsets of $V = \{1, \ldots, n\}$ that is downwards closed.

It is *d*-dimensional, if the largest cardinality among these subsets is d + 1.

A subset $\sigma \in \mathcal{K}$ is called an *r*-dimensional face, if $|\sigma| = r + 1$. It is also called an *r*-face.

イロト イポト イヨト イヨト

Terminology

A simplicial complex \mathcal{K} on a vertex set V is a set of subsets of $V = \{1, \ldots, n\}$ that is downwards closed.

It is *d*-dimensional, if the largest cardinality among these subsets is d + 1.

A subset $\sigma \in \mathcal{K}$ is called an *r*-dimensional face, if $|\sigma| = r + 1$. It is also called an *r*-face.

We denote by $\mathcal{K}^{(r)}$ the set of *r*-dimensional faces.

イロト イポト イヨト イヨト

Terminology

We shall consider orientations on the faces.

・ 同 ト ・ ヨ ト ・ ヨ ト

Terminology

We shall consider orientations on the faces.

If $\sigma = \{i_0, \ldots, i_r\}$ is an *r*-face, with $i_0 < \cdots < i_r$, any even permutation of these will be a positive orientation any odd permutation will be a negative orientation.

- 4 同 6 4 日 6 4 日 6

Terminology

We shall consider orientations on the faces.

If $\sigma = \{i_0, \ldots, i_r\}$ is an *r*-face, with $i_0 < \cdots < i_r$, any even permutation of these will be a positive orientation any odd permutation will be a negative orientation. Let $\mathcal{K}^{(r)}_+$ be the set of oriented *r*-faces.

- 4 同 6 4 日 6 4 日 6

Terminology

We shall consider orientations on the faces.

If $\sigma = \{i_0, \ldots, i_r\}$ is an *r*-face, with $i_0 < \cdots < i_r$, any even permutation of these will be a positive orientation any odd permutation will be a negative orientation. Let $\mathcal{K}^{(r)}_{\pm}$ be the set of oriented *r*-faces.

We will consider the set of *r*-forms $\Omega^{(r)}$: all functions $f : \mathcal{K}_{\pm}^{(r)} \to \mathbb{R}$ which are anti-symmetric:

$$f(\sigma)=-f(ar{\sigma}), ext{ for any } \sigma\in\mathcal{K}^{(r)}_{\pm}.$$

イロト イポト イヨト イヨト

We will define two operators on these forms:

・ 同 ト ・ ヨ ト ・ ヨ ト

We will define two operators on these forms:

The boundary operator $\partial_j : \Omega^{(j)} \to \Omega^{(j-1)}$:

for
$$f \in \Omega^{(j)}$$
 and $\sigma \in \mathcal{K}^{(j-1)}_{\pm}$
 $(\partial_j f)(\sigma) = \sum_{v: v \sigma \in \mathcal{K}^{(j)}_{\pm}} f(v\sigma),$

(4 回) (4 回) (4 回)

We will define two operators on these forms:

The boundary operator $\partial_j : \Omega^{(j)} \to \Omega^{(j-1)}$:

for
$$f \in \Omega^{(j)}$$
 and $\sigma \in \mathcal{K}^{(j-1)}_{\pm}$
 $(\partial_j f)(\sigma) = \sum_{v: v \sigma \in \mathcal{K}^{(j)}_{\pm}} f(v\sigma),$

The coboundary operator $\delta_j : \Omega^{(j)} \to \Omega^{(j+1)}$:

for
$$f \in \Omega^{(j)}$$
 and $\sigma = [v_0, \dots, v_{j+1}]$
 $(\delta_j f)(\sigma) = \sum_{i=0}^{j+1} (-1)^i f(\sigma \setminus v_i).$

・ 同 ト ・ ヨ ト ・ ヨ ト

The Laplace operator $\Delta: \Omega^{(d-1)} \to \Omega^{(d-1)}$ of \mathcal{K} is defined as

$$\Delta=\Delta^++\Delta^-,$$

where

$$\Delta^+ = \partial_d \delta_{d-1}$$
 (the upper Laplacian),

and

$$\Delta^{-} = \delta_{d-2}\partial_{d-1} \quad \text{(the lower Laplacian)}.$$

イロト イポト イヨト イヨト

The Laplace operator Random walks and expansion

The spectrum of Δ

Define

$$\lambda(\mathcal{K}) = \min_+ \operatorname{Spec}(\Delta|_{\Omega^{(d-1)}}).$$

Nikolaos Fountoulakis University of Birmingham Spectral properties of random simplicial complexes

The spectrum of Δ

Define

$$\lambda(\mathcal{K}) = \min_{+} \operatorname{Spec}(\Delta|_{\Omega^{(d-1)}}).$$

But

 $\Omega^{(d-1)} = \operatorname{Im} \delta_{d-2} \oplus \operatorname{Ker} \partial_{d-1}$ (Hodge decomposition)

and moreover

 $\operatorname{Im} \delta_{d-2} \subset \operatorname{Ker} \delta_{d-1}.$

(ロ) (同) (E) (E) (E)

The spectrum of Δ

Define

$$\lambda(\mathcal{K}) = \min_{+} \operatorname{Spec}(\Delta|_{\Omega^{(d-1)}}).$$

But

$$\Omega^{(d-1)} = \operatorname{Im} \delta_{d-2} \oplus \operatorname{Ker} \partial_{d-1}$$
 (Hodge decomposition)

and moreover

$$\operatorname{Im}\delta_{d-2} \subset \operatorname{Ker}\delta_{d-1}.$$

Thus, with $Z_{d-1} = \text{Ker}\partial_{d-1}$ we have

$$\lambda(\mathcal{K}) = \min_{+} \operatorname{Spec}(\Delta|_{Z_{d-1}}) = \min_{+} \operatorname{Spec}(\Delta^{+}|_{Z_{d-1}}).$$

・ロン ・回 と ・ヨン ・ヨン

The spectrum of Δ

Define

$$\lambda(\mathcal{K}) = \min_{+} \operatorname{Spec}(\Delta|_{\Omega^{(d-1)}}).$$

But

$$\Omega^{(d-1)} = \operatorname{Im} \delta_{d-2} \oplus \operatorname{Ker} \partial_{d-1}$$
 (Hodge decomposition)

and moreover

$$\operatorname{Im}\delta_{d-2} \subset \operatorname{Ker}\delta_{d-1}.$$

Thus, with $Z_{d-1} = \text{Ker}\partial_{d-1}$ we have

$$\lambda(\mathcal{K}) = \min_{+} \operatorname{Spec}(\Delta|_{Z_{d-1}}) = \min_{+} \operatorname{Spec}(\Delta^+|_{Z_{d-1}}).$$

In what follows, we focus on the spectrum of $\Delta^+ = \partial_d \delta_{d-1}$.

The upper Laplacian can be written as follows: for $f \in \Omega^{(d-1)}$ and $\sigma = [v_0, \ldots, v_{d-1}] \in Y_{\pm}^{(d-1)}$ we have

$$(\Delta^+ f)(\sigma) = \deg(\sigma)f(\sigma) - \sum_{v: v\sigma \in \mathcal{K}^{(d)}_{\pm}} \sum_{i=0}^{d-1} (-1)^i f(v\sigma \setminus v_i),$$

where $deg(\sigma)$ is the co-degree of σ in \mathcal{K} :

 $deg(\sigma) = |d$ -faces containing $\sigma|$.

イロト イポト イヨト イヨト

We define

$$h(\mathcal{K}) = \min_{|\mathcal{K}^{(0)}| = A_0 \uplus \cdots \uplus A_d} \frac{n \cdot |F(A_0, \dots, A_d)|}{\prod_{i=0}^d |A_i|},$$
(1)

where the minimum is taken over all partitions of $\mathcal{K}^{(0)} = V$ into d+1 non-empty parts A_0, \ldots, A_d and $F(A_0, \ldots, A_d)$ is the set of *d*-faces with exactly one vertex in each one of the parts.

- 4 同 6 4 日 6 4 日 6

We define

$$h(\mathcal{K}) = \min_{|\mathcal{K}^{(0)}| = A_0 \uplus \cdots \uplus A_d} \frac{n \cdot |F(A_0, \dots, A_d)|}{\prod_{i=0}^d |A_i|}, \quad (1)$$

where the minimum is taken over all partitions of $\mathcal{K}^{(0)} = V$ into d+1 non-empty parts A_0, \ldots, A_d and $F(A_0, \ldots, A_d)$ is the set of *d*-faces with exactly one vertex in each one of the parts.

The following theorem was proved by Parzanchevski, Rosenthal, and Tessler (2016):

Theorem

For a finite complex \mathcal{K} with a complete skeleton,

$$\lambda(\mathcal{K}) \leq h(\mathcal{K}).$$

One would hope that the would be completed into

$$\frac{h(\mathcal{K})^2}{d_{\max}(\mathcal{K})} \leq \lambda(\mathcal{K}) \leq h(\mathcal{K}),$$

but this is NOT true.

(4月) (4日) (4日)

One would hope that the would be completed into

$$\frac{h(\mathcal{K})^2}{d_{\max}(\mathcal{K})} \leq \lambda(\mathcal{K}) \leq h(\mathcal{K}),$$

but this is NOT true.

Instead, Parzanchevski, Rosenthal, and Tessler conjecture that

$$rac{h(\mathcal{K})^2}{\mathcal{C}} - \mathbf{c} \leq \lambda(\mathcal{K}),$$

where C depends on the maximum co-degree of \mathcal{K} .

イロト イヨト イヨト

The Laplace operator Random walks and expansion

The Linial-Meshulam random complex

Let Y(n, p; d) denote the random *d*-dimensional simplicial complex on $[n] := \{1, ..., n\}$ where

- 4 同 6 4 日 6 4 日 6

- Let Y(n, p; d) denote the random *d*-dimensional simplicial complex on $[n] := \{1, ..., n\}$ where
 - 1. all possible faces of dimension up to d-1 are present,

Let Y(n, p; d) denote the random *d*-dimensional simplicial complex on $[n] := \{1, \ldots, n\}$ where

- 1. all possible faces of dimension up to d-1 are present,
- 2. each subset of [n] of size d + 1 becomes a *d*-face with probability $p = p(n) \in [0, 1]$, independently of every other subset of size d + 1.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let Y(n, p; d) denote the random d-dimensional simplicial complex on $[n] := \{1, \ldots, n\}$ where

- 1. all possible faces of dimension up to d-1 are present,
- 2. each subset of [n] of size d + 1 becomes a *d*-face with probability $p = p(n) \in [0, 1]$, independently of every other subset of size d + 1.

For d = 1, this includes the binomial random graph G(n, p).

소리가 소문가 소문가 소문가

Linial and Meshulam showed that Y(n, p; 2) undergoes a sharp transition which generalises the connectivity transition of G(n, p).

Theorem (Linial and Meshulam 2006)

Let $H^1(Y(n, p; 2); \mathbb{Z}_2)$ be the first cohomology group of Y(n, p; 2). Then

$$\lim_{n\to\infty} \mathbb{P}\left(H^1(Y(n,p;d);\mathbb{Z}_2) \text{ is trivial}\right) = \begin{cases} 1, & \text{if } p = \frac{2\log n + \omega(n)}{n} \\ 0, & \text{if } p = \frac{2\log n - \omega(n)}{n} \end{cases},$$

where $\omega(n) \to \infty$ as $n \to \infty$.

・ 同 ト ・ ヨ ト ・ ヨ ト

This was generalised in a number of papers.

Theorem (Meshulam and Wallach 2008, Gundert and Wagner, 2016)

Let $H^{d-1}(Y(n, p; d); R)$ be the first cohomology group of Y(n, p; d). Then

$$\lim_{n \to \infty} \mathbb{P}\left(H^1(Y(n, p; d); R) \text{ is trivial}\right) = \begin{cases} 1, & \text{if } p = \frac{d \log n + \omega(n)}{n} \\ 0, & \text{if } p = \frac{d \log n - \omega(n)}{n} \end{cases},$$

where $\omega(n) \to \infty$ as $n \to \infty$.

・ 同 ト ・ ヨ ト ・ ヨ ト

The Laplace operator Random walks and expansion

The cohomology group H^{d-1}

This define over the set of d - 1-forms $\Omega^{(d-1)}$ as

$$H^{d-1}(\mathcal{K}) = \operatorname{Ker} \delta_{d-1} / \operatorname{Im} \delta_{d-2}.$$

イロン イロン イヨン イヨン 三日

The Laplace operator Random walks and expansion

The cohomology group H^{d-1}

This define over the set of d - 1-forms $\Omega^{(d-1)}$ as

$$H^{d-1}(\mathcal{K}) = \operatorname{Ker} \delta_{d-1} / \operatorname{Im} \delta_{d-2}.$$

When $np = d \log n - \omega(n)$, then w.h.p. there is a d - 1-face of co-degree 0.

The spectral gap and the Cheeger constant of Y(n, p; d)

Let $\delta(Y(n, p; d))$ be the minimum co-degree among the d - 1-faces of Y(n, p; d). We showed the following.

Theorem (F. and Przykucki, 2020+)

For $d \ge 2$, let $p = \frac{(1+\varepsilon)d \log n}{n}$, where $\varepsilon > 0$ is fixed. There exists C > 0 such that w.h.p.

$$\begin{split} \delta(Y(n,p;d)) - C\sqrt{\log n} &\leq \lambda(Y(n,p;d)) \leq h(Y(n,p;d)) \\ &\leq (1+O(1/n))\delta(Y(n,p;d)). \end{split}$$

Furthermore, w.h.p.

$$|\delta(Y(n, p; d)) - (1 + \varepsilon)ad \log n| < C\sqrt{\log n},$$

where $a = a(\varepsilon)$ is the solution to $\varepsilon = (1 + \varepsilon)(1 - \log a)a$.

The spectral gap and the Cheeger constant of Y(n, p; d)

The minimum co-degree

This proof uses large deviations estimates for the binomial distribution and a first moment argument - it extends an argument of Kolokolnikov, Osting and von Brecht (2014) about the minimum degree of G(n, p) in the corresponding regime.

・ 同 ト ・ ヨ ト ・ ヨ ト

The spectral gap and the Cheeger constant of Y(n, p; d)

The inequality $\lambda(Y(n, p; d)) \leq h(Y(n, p; d))$ is just the theorem of Parzanchevski, Rosenthal, and Tessler.

The spectral gap and the Cheeger constant of Y(n, p; d)

The inequality $\lambda(Y(n, p; d)) \leq h(Y(n, p; d))$ is just the theorem of Parzanchevski, Rosenthal, and Tessler.

The inequality $h(Y(n, p; d)) \le (1 + O(1/n))\delta(Y(n, p; d))$ follows from taking the partition:

if $\sigma = \{a_0, \ldots, a_{d-1}\}$ is a d-1-face with the minimum co-degree, then taking $A_i = \{a_i\}$ for $0 \le i \le d-1$ and $A_d = [n] \setminus A$ gives us a partition with $|F(A_0, A_1, \ldots, A_d)| = \delta(Y(n, p; d))$. Thus,

$$h(Y(n,p;d)) = \min_{\substack{[n]=A_0 \uplus \cdots \uplus A_d}} \frac{n \cdot |F(A_0,\ldots,A_d)|}{\prod_{i=0}^d |A_i|} \\ \leq (1+O(1/n))\delta(Y(n,p;d)).$$

イロト イポト イヨト イヨト

The link graph

Figure: The link graph of face τ in a 2-dimensional complex

イロト イヨト イヨト イヨト

æ

The link graph

Figure: The link graph of face τ in a 2-dimensional complex

イロト イヨト イヨト イヨト

æ

The sprectral gap of Y(n, p; d) - lower bound

Lower bound on $\lambda(\Delta^+)$

We will show that w.h.p.

$$\inf_{0\neq f\in Z_{d-1}}\frac{\langle\Delta^+f,f\rangle}{\langle f,f\rangle}\geq \delta(Y(n,p;d))-O(\sqrt{\log n}).$$

Nikolaos Fountoulakis University of Birmingham Spectral properties of random simplicial complexes

- 4 回 2 - 4 □ 2 - 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □

The sprectral gap of Y(n, p; d) - lower bound

Lower bound on $\lambda(\Delta^+)$

We will show that w.h.p.

$$\inf_{0\neq f\in Z_{d-1}}\frac{\langle\Delta^+f,f\rangle}{\langle f,f\rangle}\geq \delta(Y(n,p;d))-O(\sqrt{\log n}).$$

We use the following decomposition of the Laplace operator of a complex X that is due to Garland 1973

$$\Delta^+ = \sum_{ au \in X^{(d-2)}} \Delta^+_ au - (d-1)D,$$

where $(Df)(\sigma) = \deg(\sigma)f(\sigma)$ and

$$\Delta_{\tau}^{+} = D_{\mathrm{lk}\tau} - A_{\mathrm{lk}\tau}$$

is the Laplace operator of the link graph $lk\tau$ of τ in X.

The sprectral gap of Y(n, p; d) - lower bound

Lower bound on $\lambda(\Delta^+)$

We will show that w.h.p.

$$\inf_{0\neq f\in Z_{d-1}}\frac{\langle\Delta^+f,f\rangle}{\langle f,f\rangle}\geq \delta(Y(n,p;d))-O(\sqrt{\log n}).$$

We show that for any $f \in Z_{d-1}$ we can write:

$$\langle \Delta^+ f, f
angle = \sum_{ au \in X^{(d-2)}} \left(rac{1}{d} \langle D_{\mathrm{lk} au} f_{ au}, f_{ au}
angle - \langle A_{\mathrm{lk} au} f_{ au}, f_{ au}
angle
ight),$$

where

$$f_{ au}:(\mathrm{lk} au)^{(0)}
ightarrow\mathbb{R}$$
 as $f_{ au}(v)=f(v au).$

・ 同 ト ・ ヨ ト ・ ヨ ト

The sprectral gap of Y(n, p; d) - lower bound

Lower bound on $\lambda(\Delta^+)$

We will show that w.h.p.

$$\inf_{0\neq f\in Z_{d-1}}\frac{\langle\Delta^+f,f\rangle}{\langle f,f\rangle}\geq \delta(Y(n,p;d))-O(\sqrt{\log n}).$$

We show that

$$\frac{1}{d}\sum_{\tau\in X^{(d-2)}} \langle D_{\mathrm{lk}\tau}f_{\tau},f_{\tau}\rangle \geq \delta(X)\langle f,f\rangle.$$

(4月) (4日) (4日)

Now, if X = Y(n, p; d), then for any $\tau \in Y^{(d-2)}(n, p; d)$ the link graph $lk\tau$ is a random graph distributed as G(n, p). Hence, $A_{lk\tau}$ is the adjacency matrix of a G(n, p) distributed random graph.

イロン イヨン イヨン --

Now, if X = Y(n, p; d), then for any $\tau \in Y^{(d-2)}(n, p; d)$ the link graph $lk\tau$ is a random graph distributed as G(n, p). Hence, $A_{lk\tau}$ is the adjacency matrix of a G(n, p) distributed random graph.

Also, the assumption that $f \in Z_{d-1} = \text{Ker}\partial_{d-1}$ translates into $\langle f_{\tau}, \mathbf{1} \rangle = 0$, for all $\tau \in Y^{(d-2)}$.

Now, if X = Y(n, p; d), then for any $\tau \in Y^{(d-2)}(n, p; d)$ the link graph $lk\tau$ is a random graph distributed as G(n, p). Hence, $A_{lk\tau}$ is the adjacency matrix of a G(n, p) distributed random graph.

Also, the assumption that $f \in Z_{d-1} = \text{Ker}\partial_{d-1}$ translates into $\langle f_{\tau}, \mathbf{1} \rangle = 0$, for all $\tau \in Y^{(d-2)}$.

Now, if X = Y(n, p; d), then for any $\tau \in Y^{(d-2)}(n, p; d)$ the link graph $lk\tau$ is a random graph distributed as G(n, p). Hence, $A_{lk\tau}$ is the adjacency matrix of a G(n, p) distributed random graph.

Also, the assumption that $f \in Z_{d-1} = \text{Ker}\partial_{d-1}$ translates into $\langle f_{\tau}, \mathbf{1} \rangle = 0$, for all $\tau \in Y^{(d-2)}$.

These random graphs are not independent, but a result of Feige and Ofek 2005 implies that with probability $1 - o(n^{-(d-1)})$ we have

$$\langle A_{\mathrm{lk}\tau} f_{\tau}, f_{\tau} \rangle \leq C \sqrt{np} = O(\sqrt{\log n}).$$

イロト イポト イラト イラト 一日

The spectral gap of Y(n, p; d)

The union bound over all $O(n^{d-1})$ choices of $\tau \in Y^{(d-2)}(n, p; d)$ implies that w.h.p. for all $f \in Z_{d-1}$

$$\langle \Delta^+ f, f \rangle \geq \left(\delta(Y(n, p; d)) - O(\sqrt{\log n}) \right) \langle f, f \rangle.$$

イロト イポト イヨト イヨト

Random walks on Y(n, p; d)

Let Y = Y(n, p; d). We consider a random walk on $Y^{(d-1)}$.

イロン イボン イヨン イヨン 三日

Random walks on Y(n, p; d)

Let Y = Y(n, p; d). We consider a random walk on $Y^{(d-1)}$. For distinct $\sigma, \sigma' \in Y^{(d-1)}$, we write $\sigma \sim \sigma'$, if there exists $\rho \in Y^{(d)}$ such that $\sigma, \sigma' \subset \rho$.

(4 回) (4 回) (4 回)

Random walks on Y(n, p; d)

Let Y = Y(n, p; d). We consider a random walk on $Y^{(d-1)}$. For distinct $\sigma, \sigma' \in Y^{(d-1)}$, we write $\sigma \sim \sigma'$, if there exists $\rho \in Y^{(d)}$ such that $\sigma, \sigma' \subset \rho$. If (X_0, X_1, \ldots) denotes this Markov chain, then for any $n \ge 1$ the transition probabilities are

$$\mathbb{P}\left(X_n = \sigma' \mid X_{n-1} = \sigma\right) = \begin{cases} \frac{1}{d \cdot \deg(\sigma)} & \text{if } \sigma \sim \sigma' \\ 0 & \text{otherwise} \end{cases}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Random walks on Y(n, p; d)

In a more general setting, one may consider a γ -lazy version of this random walk, for $\gamma \in (0, 1)$, where

$$\mathbb{P}\left(X_{n}=\sigma\mid X_{n-1}=\sigma\right)=\gamma$$

and for $\sigma \sim \sigma'$

$$\mathbb{P}\left(X_n = \sigma' \mid X_{n-1} = \sigma\right) = \frac{1-\gamma}{d \cdot \deg(\sigma)}.$$

소리가 소문가 소문가 소문가

Random walks on Y(n, p; d)

In a more general setting, one may consider a γ -lazy version of this random walk, for $\gamma \in (0, 1)$, where

$$\mathbb{P}(X_n = \sigma \mid X_{n-1} = \sigma) = \gamma$$

and for $\sigma \sim \sigma'$

$$\mathbb{P}\left(X_n = \sigma' \mid X_{n-1} = \sigma\right) = \frac{1-\gamma}{d \cdot \deg(\sigma)}.$$

The stationary distribution on $Y^{(d-1)}$, denoted by π , is such that $\pi(\sigma)$ for any $\sigma \in Y^{(d-1)}$ we have

$$\pi(\sigma) = \frac{\deg(\sigma)}{(d+1) \cdot |Y^{(d)}|}$$

イロト イポト イラト イラト 一日

Random walks on Y(n, p; d)

A measure of the speed of mixing is the conductance of this Markov chain which we denote by Φ_Y .

イロト イポト イヨト イヨト

Random walks on Y(n, p; d)

A measure of the speed of mixing is the conductance of this Markov chain which we denote by Φ_Y .

For any non-empty subset $S \subset Y^{(d-1)}$ we define

$$\Phi_Y(S) = \frac{Q(S,\overline{S})}{\pi(S)},$$

where
$$\overline{S} = Y^{(d-1)} \setminus S$$
 and
 $Q(S, \overline{S}) = \sum_{\sigma \in S} \sum_{\sigma' \in \overline{S}: \sigma' \sim \sigma} \pi(\sigma) \cdot \frac{1}{d \cdot \deg(\sigma)}$ and
 $\pi(S) = \sum_{\sigma \in S} \pi(\sigma).$

ヘロン 人間 とくほと くほとう

Random walks on Y(n, p; d)

A measure of the speed of mixing is the conductance of this Markov chain which we denote by Φ_Y .

For any non-empty subset $S \subset Y^{(d-1)}$ we define

$$\Phi_Y(S) = \frac{Q(S,\overline{S})}{\pi(S)},$$

where
$$\overline{S} = Y^{(d-1)} \setminus S$$
 and
 $Q(S, \overline{S}) = \sum_{\sigma \in S} \sum_{\sigma' \in \overline{S}: \sigma' \sim \sigma} \pi(\sigma) \cdot \frac{1}{d \cdot \deg(\sigma)}$ and
 $\pi(S) = \sum_{\sigma \in S} \pi(\sigma).$

The conductance Φ_Y is defined as

$$\Phi_Y = \min_{S \subset Y^{(d-1)}: 0 < \pi(S) \le 1/2} \Phi_Y(S).$$

イロト イポト イヨト イヨト

Random walks on Y(n, p; d)

We prove that w.h.p. Φ_Y is bounded away from 0.

Theorem (F. and Przykucki 2020+) Let Y = Y(n, p; d) where $np = (1 + \varepsilon)d \log n$ and $\varepsilon > 0$ is fixed. There exists $\delta > 0$ such that w.h.p.

$$\Phi_{\mathbf{Y}} > \delta.$$

マロト イヨト イヨト

The conductance of Y(n, p; d)

Given
$$S \subset Y^{(d-1)}$$
 let

 $\partial^+ S = \{ \rho \subset Y^{(d)} : \text{ there exists } \sigma \in S \text{ such that } \sigma \subset \rho \}.$

and
$$B_S = \{ \sigma \in \partial^+ S : \partial \sigma \subset S \}$$

イロン イボン イヨン イヨン 三日

The conductance of Y(n, p; d)

Given $S \subset Y^{(d-1)}$ let

 $\partial^+ S = \{ \rho \subset Y^{(d)} : \text{ there exists } \sigma \in S \text{ such that } \sigma \subset \rho \}.$

and
$$B_S = \{ \sigma \in \partial^+ S : \partial \sigma \subset S \}$$

We show that

$$Q(S,\overline{S}) \geq rac{1}{d(d+1) \cdot |Y^{(d)}|} \cdot |\partial^+ S \setminus B_S|.$$

and

$$\pi(S) = \frac{\sum_{\sigma \in S} \deg(\sigma)}{d \cdot |Y^{(d)}|} \le \frac{d \cdot |\partial^+ S|}{(d+1) \cdot |Y^{(d)}|} < \frac{|\partial^+ S|}{|Y^{(d)}|},$$

whereby

The conductance of Y(n, p; d)

Given $S \subset Y^{(d-1)}$ let

 $\partial^+ S = \{ \rho \subset Y^{(d)} \ : \ \text{there exists} \ \ \sigma \in S \ \text{such that} \ \sigma \subset \rho \}.$

and
$$B_S = \{ \sigma \in \partial^+ S : \partial \sigma \subset S \}$$

$$\Phi_{\boldsymbol{Y}} \geq \frac{1}{d(d+1)} \cdot \min_{\boldsymbol{S} \subset \boldsymbol{Y}^{(d-1)}: \boldsymbol{0} < \pi(\boldsymbol{S}) \leq \frac{1}{2}} \frac{|\partial^{+}\boldsymbol{S} \setminus \boldsymbol{B}_{\boldsymbol{S}}|}{|\partial^{+}\boldsymbol{S}|}$$

Nikolaos Fountoulakis University of Birmingham Spectral properties of random simplicial complexes

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

The conductance of Y(n, p; d)

We apply a union bound in order to bound from below $\frac{|\partial^+ S \setminus B_S|}{|\partial^+ S|}$ for all $S \subset Y^{(d-1)}$ with $0 < \pi(S) \le \frac{1}{2}$.

We apply a union bound in order to bound from below $\frac{|\partial^+ S \setminus B_S|}{|\partial^+ S|}$ for all $S \subset Y^{(d-1)}$ with $0 < \pi(S) \le \frac{1}{2}$. Given $S \subset Y^{(d-1)}$ and $1 \le i \le d+1$, let $F_i(S) = \{\rho \in \partial^+ S : |\partial \rho \cap S| = i\},$ and set $f_i(S) = |F_i(S)|.$

We apply a union bound in order to bound from below $\frac{|\partial^+ S \setminus B_S|}{|\partial^+ S|}$ for all $S \subset Y^{(d-1)}$ with $0 < \pi(S) \le \frac{1}{2}$. Given $S \subset Y^{(d-1)}$ and $1 \le i \le d+1$, let $F_i(S) = \{\rho \in \partial^+ S : |\partial \rho \cap S| = i\},$

and set $f_i(S) = |F_i(S)|$.

Denoting |S| = m, by double counting, we have that

$$\sum_{i=1}^{d+1} if_i(S) = m(n-d).$$

We apply a union bound in order to bound from below $\frac{|\partial^+ S \setminus B_S|}{|\partial^+ S|}$ for all $S \subset Y^{(d-1)}$ with $0 < \pi(S) \leq \frac{1}{2}$. Given $S \subset Y^{(d-1)}$ and $1 \leq i \leq d+1$. let $F_i(S) = \{ \rho \in \partial^+ S : |\partial \rho \cap S| = i \},\$ and set $f_i(S) = |F_i(S)|$. Note that $f_{d+1}(S) = K_{d+1}^{(d)}(S),$ in other words...

$$f_{d+1}(S) = |B_S|.$$

イロト イポト イラト イラト 一日

To bound $\mathcal{K}_{d+1}^{(d)}(S)$ we use a weaker form of the Kruskal-Katona theorem.

Theorem

Suppose $r \ge 1$ and G is an r-uniform hypergraph with

$$m = \binom{x_m}{r} = \frac{x_m(x_m-1)\dots(x_m-r+1)}{r!}$$

hyperedges, for some real number $x_m \ge r$. Then $K_{r+1}^{(r)}(G) \le {x_m \choose r+1}$, with equality if and only if x_m is an integer and $G = K_{x_m}^{(r)}$.

- 4 同 6 4 日 6 4 日 6

The conductance of Y(n, p; d)

This implies that

$$\frac{f_{d+1}(S)}{nm} \leq \frac{1}{n} \frac{\binom{x_m}{d+1}}{\binom{x_m}{d}} = \frac{x_m - d}{n(d+1)} \leq \frac{(md!)^{1/d}}{n(d+1)}.$$

イロト イヨト イヨト イヨト

Э

The conductance of Y(n, p; d)

This implies that

$$\frac{f_{d+1}(S)}{nm} \leq \frac{1}{n} \frac{\binom{x_m}{d+1}}{\binom{x_m}{d}} = \frac{x_m - d}{n(d+1)} \leq \frac{(md!)^{1/d}}{n(d+1)}.$$

Since
$$\sum_{i=1}^{d+1} if_i(S) = m(n-d)$$
, we obtain

$$\sum_{i=1}^{d} f_i(S) \ge \frac{nm}{d} \left(1 - \frac{d}{n} - \frac{(md!)^{1/d}}{n} \right) = \frac{nm}{d} \left(1 - \frac{(md!)^{1/d}}{n} - o(1) \right)$$

.

æ

イロト イポト イヨト イヨト

Thus, for example, if $m = o(n^d)$, then

$$|(\partial^+ S \setminus B_S) \cap Y^{(d)}| \sim \operatorname{Bin}\left(\frac{nm}{d}(1-o(1)), p\right).$$

which is concentrated around $(1 + \varepsilon)m \log n$, since $np = (1 + \varepsilon)d \log n$,

・ロト ・回ト ・ヨト

Thus, for example, if $m = o(n^d)$, then

$$|(\partial^+ S \setminus B_S) \cap Y^{(d)}| \sim \operatorname{Bin}\left(\frac{nm}{d}(1-o(1)), p\right).$$

which is concentrated around $(1 + \varepsilon)m \log n$, since $np = (1 + \varepsilon)d \log n$, and

$$|B_S| = f_{d+1}(S) \le mn \frac{(md!)^{1/d}}{(d+1)n} = o(nm),$$

whereby

$$|B_S \cap Y^{(d)}| \sim \operatorname{Bin}(o(nm), p)$$

which is concentrated around $o(m \log n)$.

- 4 同 6 4 日 6 4 日 6

The conductance of Y(n, p; d)

So for a suitable $k_0 = o(nm)$ we have

$$\mathbb{P}\left(|(\partial^+ S \setminus B_S) \cap Y^{(d)}| \ge |\partial^+ S|/2\right)$$

$$\ge \mathbb{P}\left(|B_S \cap Y^{(d)}| \le k_0 \text{ and } |(\partial^+ S \setminus B_S) \cap Y^{(d)}| \ge k_0\right)$$

$$\ge 1 - \exp\left(-(1 - o(1))(1 + \varepsilon)m\log n\right).$$

イロト イポト イヨト イヨト

æ

The conductance of Y(n, p; d)

So for a suitable $k_0 = o(nm)$ we have

$$\mathbb{P}\left(|(\partial^+ S \setminus B_S) \cap Y^{(d)}| \ge |\partial^+ S|/2\right)$$

$$\ge \mathbb{P}\left(|B_S \cap Y^{(d)}| \le k_0 \text{ and } |(\partial^+ S \setminus B_S) \cap Y^{(d)}| \ge k_0\right)$$

$$\ge 1 - \exp\left(-(1 - o(1))(1 + \varepsilon)m\log n\right).$$

But the number of tightly connected sets of size m is estimated to being at most

$$4^m (dn)^m = \exp((1+o(1))m\log n).$$

and the union bound works in this case...

- 4 同 2 4 日 2 4 日 2

Thank you!

・ロン ・回 と ・ ヨン ・ モン

æ