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The Laplace operator
Random walks and expansion

The graph Laplace operator

Given a graph G = (V ,E ), the (combinatorial) Laplace operator is
defined as

∆G = DG − AG ,

where DG = diag(deg(v))v∈V and AG is the adjacency matrix of
G .
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The graph Laplace operator

Let λ(G ) be the smallest positive eigenvalue of ∆G : this is the
spectral gap of ∆G .

Alon and Milman (1985) showed that for any non-empty (proper)
subset A ⊂ V (G ) we have

λ(G ) ≤ n · e(A,V \ A)

|A||V \ A|
=: h(A;G ).
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Setting h(G ) = minA : 0<|A|≤|V |/2 h(A;G ) one can complete the
above inequality with a lower bound and get

h2(G )

8dmax(G )
≤ λ(G ) ≤ h(G ), (Cheeger inequalities)

where dmax(G ) is the maximum degree of G .

In particular, the above inequality implies that

λ(G ) ≤ |V (G )|
|V (G )| − 1

dmin(G ),

where dmin(G ) is the minimum degree of G .
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The Laplace operator of a d-dimensional simplicial complex

Terminology

A simplicial complex K on a vertex set V is a set of subsets of
V = {1, . . . , n} that is downwards closed.

It is d-dimensional, if the largest cardinality among these subsets is
d + 1.

A subset σ ∈ K is called an r -dimensional face, if |σ| = r + 1.
It is also called an r -face.

We denote by K(r) the set of r -dimensional faces.
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The Laplace operator of a d-dimensional simplicial complex

Terminology

We shall consider orientations on the faces.

If σ = {i0, . . . , ir} is an r -face, with i0 < · · · < ir ,
any even permutation of these will be a positive orientation

any odd permutation will be a negative orientation.

Let K(r)
± be the set of oriented r -faces.

We will consider the set of r -forms Ω(r): all functions f : K(r)
± → R

which are anti-symmetric:

f (σ) = −f (σ̄), for any σ ∈ K(r)
± .
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The Laplace operator of a d-dimensional simplicial complex

We will define two operators on these forms:

The boundary operator ∂j : Ω(j) → Ω(j−1):

for f ∈ Ω(j) and σ ∈ K(j−1)
±

(∂j f )(σ) =
∑

v :vσ∈K(j)
±

f (vσ),

The coboundary operator δj : Ω(j) → Ω(j+1):

for f ∈ Ω(j) and σ = [v0, . . . , vj+1]

(δj f )(σ) =

j+1∑
i=0

(−1)i f (σ \ vi ).
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The Laplace operator of a d-dimensional simplicial complex

The Laplace operator ∆ : Ω(d−1) → Ω(d−1) of K is defined as

∆ = ∆+ + ∆−,

where
∆+ = ∂dδd−1 (the upper Laplacian),

and
∆− = δd−2∂d−1 (the lower Laplacian).
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The spectrum of ∆

Define
λ(K) = min

+
Spec(∆|Ω(d−1)).

But

Ω(d−1) = Imδd−2 ⊕Ker∂d−1 (Hodge decomposition)

and moreover
Imδd−2 ⊂ Kerδd−1.

Thus, with Zd−1 = Ker∂d−1 we have

λ(K) = min
+

Spec(∆|Zd−1
) = min

+
Spec(∆+|Zd−1

).

In what follows, we focus on the spectrum of ∆+ = ∂dδd−1.
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The Laplace operator of a d-dimensional simplicial complex

The upper Laplacian can be written as follows: for f ∈ Ω(d−1) and

σ = [v0, . . . , vd−1] ∈ Y
(d−1)
± we have

(∆+f )(σ) = deg(σ)f (σ)−
∑

v :vσ∈K(d)
±

d−1∑
i=0

(−1)i f (vσ \ vi ),

where deg(σ) is the co-degree of σ in K:

deg(σ) = |d-faces containing σ|.
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The spectral gap of ∆+ and a Cheeger inequality

We define

h(K) = min
|K(0)|=A0]···]Ad

n · |F (A0, . . . ,Ad)|∏d
i=0 |Ai |

, (1)

where the minimum is taken over all partitions of K(0) = V into
d + 1 non-empty parts A0, . . . ,Ad and F (A0, . . . ,Ad) is the set of
d-faces with exactly one vertex in each one of the parts.

The following theorem was proved by Parzanchevski, Rosenthal,
and Tessler (2016):

Theorem

For a finite complex K with a complete skeleton,

λ(K) ≤ h(K).
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The spectral gap of ∆+ and a Cheeger inequality

One would hope that the would be completed into

h(K)2

dmax(K)
≤ λ(K) ≤ h(K),

but this is NOT true.

Instead, Parzanchevski, Rosenthal, and Tessler conjecture that

h(K)2

C
− c ≤ λ(K),

where C depends on the maximum co-degree of K.
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The Linial-Meshulam random complex

Let Y (n, p; d) denote the random d-dimensional simplicial complex
on [n] := {1, . . . , n} where

1. all possible faces of dimension up to d − 1 are present,

2. each subset of [n] of size d + 1 becomes a d-face with
probability p = p(n) ∈ [0, 1], independently of every other
subset of size d + 1.

For d = 1, this includes the binomial random graph G (n, p).
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The Linial-Meshulam random complex

Linial and Meshulam showed that Y (n, p; 2) undergoes a sharp
transition which generalises the connectivity transition of G (n, p).

Theorem (Linial and Meshulam 2006)

Let H1(Y (n, p; 2);Z2) be the first cohomology group of Y (n, p; 2).
Then

lim
n→∞

P
(
H1(Y (n, p; d);Z2) is trivial

)
=

{
1, if p = 2 log n+ω(n)

n

0, if p = 2 log n−ω(n)
n

,

where ω(n)→∞ as n→∞.
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The Linial-Meshulam random complex

This was generalised in a number of papers.

Theorem (Meshulam and Wallach 2008, Gundert and Wagner,
2016)

Let Hd−1(Y (n, p; d);R) be the first cohomology group of
Y (n, p; d). Then

lim
n→∞

P
(
H1(Y (n, p; d);R) is trivial

)
=

{
1, if p = d log n+ω(n)

n

0, if p = d log n−ω(n)
n

,

where ω(n)→∞ as n→∞.
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The cohomology group Hd−1

This define over the set of d − 1-forms Ω(d−1) as

Hd−1(K) = Kerδd−1/Imδd−2.

When np = d log n − ω(n), then w.h.p. there is a d − 1-face of
co-degree 0.
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The spectral gap and the Cheeger constant of Y (n, p; d)

Let δ(Y (n, p; d)) be the minimum co-degree among the
d − 1-faces of Y (n, p; d). We showed the following.

Theorem (F. and Przykucki, 2020+)

For d ≥ 2, let p = (1+ε)d log n
n , where ε > 0 is fixed. There exists

C > 0 such that w.h.p.

δ(Y (n, p; d))− C
√

log n ≤ λ(Y (n, p; d)) ≤ h(Y (n, p; d))

≤ (1 + O(1/n))δ(Y (n, p; d)).

Furthermore, w.h.p.

|δ(Y (n, p; d))− (1 + ε)ad log n| < C
√

log n,

where a = a(ε) is the solution to ε = (1 + ε)(1− log a)a.
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The spectral gap and the Cheeger constant of Y (n, p; d)

The minimum co-degree
This proof uses large deviations estimates for the binomial
distribution and a first moment argument - it extends an argument
of Kolokolnikov, Osting and von Brecht (2014) about the
minimum degree of G (n, p) in the corresponding regime.

The inequality λ(Y (n, p; d)) ≤ h(Y (n, p; d)) is just the theorem of
Parzanchevski, Rosenthal, and Tessler.

The inequality h(Y (n, p; d)) ≤ (1 + O(1/n))δ(Y (n, p; d)) follows
from taking the partition:
if σ = {a0, . . . , ad−1} is a d − 1-face with the minimum co-degree,
then taking Ai = {ai} for 0 ≤ i ≤ d − 1 and Ad = [n] \ A gives us
a partition with |F (A0,A1, . . . ,Ad)| = δ(Y (n, p; d)). Thus,

h(Y (n, p; d)) = min
[n]=A0]···]Ad

n · |F (A0, . . . ,Ad)|∏d
i=0 |Ai |

≤ (1 + O(1/n))δ(Y (n, p; d)).
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The link graph

Figure: The link graph of face τ in a 2-dimensional complex

τ
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The sprectral gap of Y (n, p; d) - lower bound

Lower bound on λ(∆+)

We will show that w.h.p.

inf
06=f ∈Zd−1

〈∆+f , f 〉
〈f , f 〉

≥ δ(Y (n, p; d))− O(
√

log n).
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Lower bound on λ(∆+)

We will show that w.h.p.

inf
06=f ∈Zd−1

〈∆+f , f 〉
〈f , f 〉

≥ δ(Y (n, p; d))− O(
√

log n).

We use the following decomposition of the Laplace operator of a
complex X that is due to Garland 1973

∆+ =
∑

τ∈X (d−2)

∆+
τ − (d − 1)D,

where (Df )(σ) = deg(σ)f (σ) and

∆+
τ = Dlkτ − Alkτ

is the Laplace operator of the link graph lkτ of τ in X .
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The sprectral gap of Y (n, p; d) - lower bound

Lower bound on λ(∆+)

We will show that w.h.p.

inf
06=f ∈Zd−1

〈∆+f , f 〉
〈f , f 〉

≥ δ(Y (n, p; d))− O(
√

log n).

We show that for any f ∈ Zd−1 we can write:

〈∆+f , f 〉 =
∑

τ∈X (d−2)

(
1

d
〈Dlkτ fτ , fτ 〉 − 〈Alkτ fτ , fτ 〉

)
,

where

fτ : (lkτ)(0) → R as fτ (v) = f (vτ).
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Lower bound on λ(∆+)

We will show that w.h.p.

inf
06=f ∈Zd−1

〈∆+f , f 〉
〈f , f 〉

≥ δ(Y (n, p; d))− O(
√

log n).

We show that

1

d

∑
τ∈X (d−2)

〈Dlkτ fτ , fτ 〉 ≥ δ(X )〈f , f 〉.
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The spectral gap of Y (n, p; d)

Now, if X = Y (n, p; d), then for any τ ∈ Y (d−2)(n, p; d) the link
graph lkτ is a random graph distributed as G (n, p). Hence, Alkτ is
the adjacency matrix of a G (n, p) distributed random graph.

Also, the assumption that f ∈ Zd−1 = Ker∂d−1 translates into
< fτ , 1 >= 0, for all τ ∈ Y (d−2).

These random graphs are not independent, but a result of Feige
and Ofek 2005 implies that with probability 1−o(n−(d−1)) we have

〈Alkτ fτ , fτ 〉 ≤ C
√
np = O(

√
log n).
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The spectral gap of Y (n, p; d)

The union bound over all O(nd−1) choices of τ ∈ Y (d−2)(n, p; d)
implies that w.h.p. for all f ∈ Zd−1

〈∆+f , f 〉 ≥
(
δ(Y (n, p; d))− O(

√
log n)

)
〈f , f 〉.
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Random walks on Y (n, p; d)

Let Y = Y (n, p; d). We consider a random walk on Y (d−1).

For distinct σ, σ′ ∈ Y (d−1), we write σ ∼ σ′, if there exists
ρ ∈ Y (d) such that σ, σ′ ⊂ ρ.
If (X0,X1, . . .) denotes this Markov chain, then for any n ≥ 1 the
transition probabilities are

P
(
Xn = σ′ | Xn−1 = σ

)
=

{
1

d ·deg(σ) if σ ∼ σ′

0 otherwise
.
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Random walks on Y (n, p; d)

In a more general setting, one may consider a γ-lazy version of this
random walk, for γ ∈ (0, 1), where

P (Xn = σ | Xn−1 = σ) = γ

and for σ ∼ σ′

P
(
Xn = σ′ | Xn−1 = σ

)
=

1− γ
d · deg(σ)

.

The stationary distribution on Y (d−1), denoted by π, is such that
π(σ) for any σ ∈ Y (d−1) we have

π(σ) =
deg(σ)

(d + 1) · |Y (d)|
.
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Random walks on Y (n, p; d)

A measure of the speed of mixing is the conductance of this
Markov chain which we denote by ΦY .

For any non-empty subset S ⊂ Y (d−1) we define

ΦY (S) =
Q(S ,S)

π(S)
,

where S = Y (d−1) \ S and
Q(S , S) =

∑
σ∈S

∑
σ′∈S:σ′∼σ π(σ) · 1

d ·deg(σ) and

π(S) =
∑

σ∈S π(σ).

The conductance ΦY is defined as

ΦY = min
S⊂Y (d−1):0<π(S)≤1/2

ΦY (S).
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Random walks on Y (n, p; d)

We prove that w.h.p. ΦY is bounded away from 0.

Theorem (F. and Przykucki 2020+)

Let Y = Y (n, p; d) where np = (1 + ε)d log n and ε > 0 is fixed.
There exists δ > 0 such that w.h.p.

ΦY > δ.
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The conductance of Y (n, p; d)

Given S ⊂ Y (d−1) let

∂+S = {ρ ⊂ Y (d) : there exists σ ∈ S such that σ ⊂ ρ}.

and BS = {σ ∈ ∂+S : ∂σ ⊂ S}
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The conductance of Y (n, p; d)

Given S ⊂ Y (d−1) let

∂+S = {ρ ⊂ Y (d) : there exists σ ∈ S such that σ ⊂ ρ}.

and BS = {σ ∈ ∂+S : ∂σ ⊂ S}

We show that

Q(S ,S) ≥ 1

d(d + 1) · |Y (d)|
· |∂+S \ BS |.

and

π(S) =

∑
σ∈S deg(σ)

d · |Y (d)|
≤ d · |∂+S |

(d + 1) · |Y (d)|
<
|∂+S |
|Y (d)|

,

whereby
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The conductance of Y (n, p; d)

Given S ⊂ Y (d−1) let

∂+S = {ρ ⊂ Y (d) : there exists σ ∈ S such that σ ⊂ ρ}.

and BS = {σ ∈ ∂+S : ∂σ ⊂ S}

ΦY ≥
1

d(d + 1)
· min
S⊂Y (d−1):0<π(S)≤ 1

2

|∂+S \ BS |
|∂+S |

.
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The conductance of Y (n, p; d)

We apply a union bound in order to bound from below |∂+S\BS |
|∂+S| for

all S ⊂ Y (d−1) with 0 < π(S) ≤ 1
2 .

Given S ⊂ Y (d−1) and 1 ≤ i ≤ d + 1, let

Fi (S) = {ρ ∈ ∂+S : |∂ρ ∩ S | = i},

and set fi (S) = |Fi (S)|.
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The conductance of Y (n, p; d)

We apply a union bound in order to bound from below |∂+S\BS |
|∂+S| for

all S ⊂ Y (d−1) with 0 < π(S) ≤ 1
2 .

Given S ⊂ Y (d−1) and 1 ≤ i ≤ d + 1, let

Fi (S) = {ρ ∈ ∂+S : |∂ρ ∩ S | = i},

and set fi (S) = |Fi (S)|.

Denoting |S | = m, by double counting, we have that

d+1∑
i=1

ifi (S) = m(n − d).
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The conductance of Y (n, p; d)

We apply a union bound in order to bound from below |∂+S\BS |
|∂+S| for

all S ⊂ Y (d−1) with 0 < π(S) ≤ 1
2 .

Given S ⊂ Y (d−1) and 1 ≤ i ≤ d + 1, let

Fi (S) = {ρ ∈ ∂+S : |∂ρ ∩ S | = i},

and set fi (S) = |Fi (S)|.

Note that
fd+1(S) = K

(d)
d+1(S),

in other words...
fd+1(S) = |BS |.
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The conductance of Y (n, p; d)

To bound K
(d)
d+1(S) we use a weaker form of the Kruskal-Katona

theorem.

Theorem

Suppose r ≥ 1 and G is an r-uniform hypergraph with

m =

(
xm
r

)
=

xm(xm − 1) . . . (xm − r + 1)

r !

hyperedges, for some real number xm ≥ r . Then K
(r)
r+1(G ) ≤

( xm
r+1

)
,

with equality if and only if xm is an integer and G = K
(r)
xm .
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The conductance of Y (n, p; d)

This implies that

fd+1(S)

nm
≤ 1

n

( xm
d+1

)(xm
d

) =
xm − d

n(d + 1)
≤ (md!)1/d

n(d + 1)
.

Since
∑d+1

i=1 ifi (S) = m(n − d), we obtain

d∑
i=1

fi (S) ≥ nm

d

(
1− d

n
− (md!)1/d

n

)
=

nm

d

(
1− (md!)1/d

n
− o(1)

)
.
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The conductance of Y (n, p; d)

Thus, for example, if m = o(nd), then

|(∂+S \ BS) ∩ Y (d)| ∼ Bin
(nm

d
(1− o(1)), p

)
.

which is concentrated around (1 + ε)m log n, since
np = (1 + ε)d log n,

and

|BS | = fd+1(S) ≤ mn
(md!)1/d

(d + 1)n
= o(nm),

whereby
|BS ∩ Y (d)| ∼ Bin (o(nm), p)

which is concentrated around o(m log n).
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The conductance of Y (n, p; d)

So for a suitable k0 = o(nm) we have

P
(
|(∂+S \ BS) ∩ Y (d)| ≥ |∂+S |/2

)
≥ P

(
|BS ∩ Y (d)| ≤ k0 and |(∂+S \ BS) ∩ Y (d)| ≥ k0

)
≥ 1− exp (−(1− o(1))(1 + ε)m log n) .

But the number of tightly connected sets of size m is estimated to
being at most

4m(dn)m = exp((1 + o(1))m log n).

and the union bound works in this case...
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Thank you!
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