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(Arguably) Most Embarrassing Algorithmic Problem in Random
Graphs

@ Consider G(N, p).
@ The largest clique (fully connected subgraph) is ~ 2log1 N.
P

@ A trivial greedy algorithm finds a clique of size ~ log: N.
P

@ Karp [1976] Find a better polynomial time algorithm.
@ Still open. This is embarrassing...
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Sparse graphs — similar story

@ Consider G(N, d/N).
o The largest independent set is ~ 2(1 + 04(1)) 39N Frieze
[1990].

@ A trivial greedyl/ a!jgorithm finds an independent set of size
~ (14 04(1)) 2FN.
@ Nothing better known.
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@ Many other examples of an apparent gap between the
optimal values estimated by non-constructive method, and
the values achievable by fast (polynomial time) algorithms:

Random K-Sat, MaxCut on random graphs, proper
coloring of a random graph (dense and sparse), optimizing
Hamiltonian of a p-spin glass problem, etc, etc.

@ What's the barrier? Intricate geometry of the solution
space, the Overlap Gap Property (OGP) originating from
spin glass theory.

@ This talk: OGP - obstruction to optimization based on
low-degree polynomials for spin glass models and largest
ind setin G(N, d/N).
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Overlap Gap Property

Generic minimization problem with random input X

min £(6, X).
0€0

OGP holds if there exists > 0,1 < v, such that for every
64, 0> satisfying

LX) < mi X =
‘C(eja ) — g;lg [’(Ha )+,U,, J 172
it holds
101 — 2] € [0, 1] U [, +00)

That is every two p-optimal solutions are either "close” or "far”
from each other.
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Theorem ( )

For every sufficiently large d and every 3 € (% + 2\1—@, 1) there

exists 0 < v1 < v» < 1 such that for every two ind sets I, I with
size at least BOPT ~ 32999 N, jt is the case that

LAy
OPT

is either < vy or > vo, w.h.p. as n — oo. Namely OGP holds.

Proof: simple first moment method.
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OGP for an interpolated family of G(N, d/N)

e Enumerate all pairs j = 1,2,..., (§).

e Create a sequence G;,0 < j < (}) where Go = G(N, d/N)
and G;4 is obtained from G; by resampling edge j + 1.

@ Note G; g G(N,d/N). Go and G(N) are independent.
2
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OGP for an interpolated family of G(N, d/N)

Theorem

For every sufficiently large d and every 3 € (% I 21%, 1) there

exists 0 < vy < vo < 1 such that for every 0 < jy < jo < (3) and
every two ind sets |y in G, and k in G, with size at least

BOPT ~ B""‘j%N, it is the case that

“1 N /2’
OPT

is either < vy or > vy. Furthermore, when j; = 0 and j» = (),
only the case < v4 is possible.
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Optimizing a Hamiltonian of a p-spin model.

@ A= (A, i1 <lt,....ip < N) e RN®Piid. N(O, N-52).

@ Optimization over Hamming cube By = {—1,1}N

min (A, c®P) = min > A 040
UEBN< ’ > oc€EBN . . / Hoenslp™h Io
1<it, s ip<N
@ Whenp=2
min o Ao.

oEBN
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Optimizing a Hamiltonian of a p-spin model.

© A= (Ajipd < it ..o ip < N) € RV iid. N(O,N"%2).
@ Optimization over sphere Sy £ {x € RN : ||x[|» = V/N}.

..,ip?

mjsn (A, d¥P) = mjsn E A o, - 0,
€ <
7EON TEON 4 <y <N

A
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Optimizing a Hamiltonian of a p-spin model.

© A= (Ajipd < it ..o ip < N) € RV iid. N(O,N"%2).
@ Optimization over sphere Sy £ {x € RN : ||x[|» = V/N}.

..,ip?

min (A, c®P) = min Y A, i0i -0
geSN 0ESN ) / enaip P
1<iy,...,ip<N

@ When p = 2 (easy),

min o' Ao.
oESN
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Background

@ With high probability the limits exists and can be computed
Talagrand [2005], confirming prediction by Parisi [1979].
Panchenko’s book [2013]

1
lim — min (A, 6®P) =t <0
N N JEBN< ,0°P) "Bin

1
lim — min (A, o®P) =n&, < 0.
N—>ooNo€SN< 7 > nSp

@ 75, ~ —0.763166 when p = 2.
@ Algorithmic goal: find opg € By or € Sy (depending on
the problem) such that w.h.p. as N — oco.
1 ® *
N<A7 UA|g> S -n + €,
for every € > 0.
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Existing algorithms

@ Montanari [2018] Solved the problem when p = 2.
Assumes unproven conjecture of no OGP.

@ Subag [2018] Same for (mixture of) spherical p-spin:
optimization over Sy = {o € RN : ||o|]2 = v/N} when no
OGP.

@ Both motivated by iteration scheme proposed by
Bolthausen [2014]
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OGP. Definition

Fix two independent copies A, A € RN®P i.i.d. N(0, N-F2).
Interpolate the instances A = {\/1 — TA+ /TA}.

Definition

The set A satisfies the Overlap Gap Property (OGP) with
domain Xy ¢ RV, and parameters 1 > 0,0 < 11 < vp < 1 if for
every 0 < 71,7 < 1 and every o4, 05 € X satisfying

1

(Ao < inf (AL o)t =12

TEXN N

it holds

(g1, 02)|

N € [0,1/1]U[V2,1].
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OGP. Facts and conjectures

OGP holds for every p > 4 for the domains By = {—1,1}"N and
Sn={o €RN:|lolla = VN}

p = 2 conjectured not to exhibit OGP for By.
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Algorithms: Low-degree polynomials

@ Fix N degree-D polynomials

Pi(X1,..., Xne) = Z 5j,sHXi7 1<j<N.
IS|<D,SC[NP]  ieS

@ The proposed solution is P(A) = (P;(A),1 <j < N).
Round if necessary.

@ Algorithms which can be modeled by low degree
polynomials.

e Local algorithms on graphs
e Spectral methods
e Approximate Message Passing

18/26
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Main result. Failure of low-degree polynomials. Spin glasses

Low-D polymial based methods fails to optimize p-spin
spherical model with high probability promise.

Theorem ( , some technical
assumptions skipped)

Fix even p > 4. Suppose E||P(A)||3 = N. Let
Q(A) = VNP(A)/||P(A)|2. If

P (N—1 (A, Q%P(A)) < 77) > 1 — (1/4) exp(—2D),

thenn > n* + u, where u comes from OGP, I.e. degree-D
polynomials cannot optimize with "high” promise.

Similar result holds for Ising model.

19/26



Main result. Failure of low-degree polynomials. Largest i.s. in
G(N,d/N)

20/26



Main result. Failure of low-degree polynomials. Largest i.s. in
G(N,d/N)

@ Consider any degree-D polynomial P(A) € RN where A —
adjacency matrix of G(N, d/N).

20/26



Main result. Failure of low-degree polynomials. Largest i.s. in
G(N,d/N)

@ Consider any degree-D polynomial P(A) € RN where A —
adjacency matrix of G(N, d/N).

@ Rounding: a) select all nodes i with P;(A) > 1; b) delete
nodes violating ind set constraint.

20/26



Main result. Failure of low-degree polynomials. Largest i.s. in
G(N,d/N)

@ Consider any degree-D polynomial P(A) € RN where A —
adjacency matrix of G(N, d/N).

@ Rounding: a) select all nodes i with P;(A) > 1; b) delete
nodes violating ind set constraint.

Theorem ( , some technical

assumptions skipped)

Consider the independent set produced by the degree-D
polynomial P(A) plus rounding. Suppose |l| = 5(logd/d)N
with probability at least 1 — exp (—Q2(Dlog N)). Then for all
large enough d 8 < B5gp-

l.e. degree-D polynomials cannot produce an ind set above
OGP threshold with "high promise”.

20/26
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Proof idea: stability of algorithms

@ Proof by contradiction. ;1 > 0,0 < vy < <1—
parameters of OGP. Suppose oaj,(A) satisfies
N=Y(A,oif) < " + u with "good enough” probability.

@ Key property — Stability. Small changes in A result in small
changes in oag — most difficult part. Stability is established
using noise sensitivity type arguments.

21/26
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Noise sensitivity

@ Suppose A, A € RN®P gre gaussian p-correlated. Suppose
f=(f,..., ) : RN®P — RN consists of degree D
polynomials and E[||f(A)||3] = E[||f(A)||3] = 1.

For any t > (6e)P

P (11£(A) — F(A)I3 = 21(1 - p°)) < exp (—fet5> .
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Proof idea: stability of algorithms

@ Recall interpolation A, £ 1 — 7A+ /7A, 7 € [0, 1].

@ If 7o — 7 is "small” then ||oa(Ar,) — oale(Ar )2 is small as
well — stability

@ Thatis N='(oa15(A;), oa1g(Ao)) changes continuously in .

@ On the other hand, when A and A are independent
N=1{oa1e(Ao), oale(A1)) is 0(1) and thus < vs.

@ Thus for some 7, N~ (o a1(A:), oale(Ao)) € (v1,12) —
contradiction to p-optimality of oaj,. O

23/26
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Rahman & Virag [2017] (improving on G & Sudan [2017]).
Finding a near-satisfying assignment of a random
NAE-K-SAT problem G & Sudan [2017] using sequential
local algorithms.

@ WALKSAT for random NAE-K-SAT problem Coja-Oghlan,

Hagshenas & Hetterich [2017]

Finding a large cut of a random sparse hypergraph using
local algorithms Chen, G, Panchenko & Rahman [2019]

Finding a large ind set in G(N, d/N) using quantum local
algorithm (QAOA) G, Farhi & Gutmann [2020]
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Problems in high-dimensional inference exhibiting OGP

@ High-dimensional regression below LASSO threshold G &
Zadik [2017]

@ Planted Clique Problem G & Zadik [2019]
@ Maximum sub-matrix of a random matrix G & Li [2018]

@ Sparse PCA Arous, Wein & Zadik [2020], G, Jagannath &
Sen [2020]
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