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(Arguably) Most Embarrassing Algorithmic Problem in Random
Graphs

Consider G(N,p).
The largest clique (fully connected subgraph) is ∼ 2 log 1

p
N.

A trivial greedy algorithm finds a clique of size ∼ log 1
p

N.

Karp [1976] Find a better polynomial time algorithm.
Still open. This is embarrassing...
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Sparse graphs – similar story

Consider G(N,d/N).

The largest independent set is ∼ 2(1 + od (1)) log d
d N Frieze

[1990].
A trivial greedy algorithm finds an independent set of size
∼ (1 + od (1)) log d

d N.
Nothing better known.
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Algorithmic Barriers in Random Structures

Many other examples of an apparent gap between the
optimal values estimated by non-constructive method, and
the values achievable by fast (polynomial time) algorithms:

Random K-Sat, MaxCut on random graphs, proper
coloring of a random graph (dense and sparse), optimizing
Hamiltonian of a p-spin glass problem, etc, etc.
What’s the barrier? Intricate geometry of the solution
space, the Overlap Gap Property (OGP) originating from
spin glass theory.
This talk: OGP - obstruction to optimization based on
low-degree polynomials for spin glass models and largest
ind set in G(N,d/N).
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Overlap Gap Property

Generic minimization problem with random input X

min
θ∈Θ
L(θ,X ).

OGP holds if there exists µ > 0, ν1 < ν2, such that for every
θ1, θ2 satisfying

L(θj ,X ) ≤ min
θ∈Θ
L(θ,X ) + µ, j = 1,2

it holds

‖θ1 − θ2‖ ∈ [0, ν1] ∪ [ν2,+∞)

That is every two µ-optimal solutions are either ”close” or ”far”
from each other.
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OGP for Largest Independent Set Problem in G(N,d/N)

Theorem (G & Sudan [2017])

For every sufficiently large d and every β ∈
(

1
2 + 1

2
√

2
,1
)

there
exists 0 < ν1 < ν2 < 1 such that for every two ind sets I1, I2 with
size at least βOPT ≈ β 2 log g

d N, it is the case that

|I1 ∩ I2|
OPT

is either < ν1 or > ν2, w.h.p. as n→∞. Namely OGP holds.

Remark
Proof: simple first moment method.
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OGP for an interpolated family of G(N,d/N)

Enumerate all pairs j = 1,2, . . . ,
(N

2

)
.

Create a sequence Gj ,0 ≤ j ≤
(N

2

)
where G0 = G(N,d/N)

and Gj+1 is obtained from Gj by resampling edge j + 1.

Note Gj
d
= G(N,d/N). G0 and G(N

2) are independent.
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OGP for an interpolated family of G(N,d/N)

Theorem
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1
2 + 1

2
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2
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(N

2

)
and

every two ind sets I1 in Gj1 and I2 in Gj2 with size at least
βOPT ≈ β 2 log g

d N, it is the case that

|I1 ∩ I2|
OPT

is either < ν1 or > ν2. Furthermore, when j1 = 0 and j2 =
(N

2

)
,

only the case < ν1 is possible.
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Optimizing a Hamiltonian of a p-spin model. Ising

A = (Ai1,...,ip ,1 ≤ i1, . . . , ip ≤ N) ∈ RN⊗p i.i.d. N (0,N−
p−1

2 ).

Optimization over Hamming cube BN , {−1,1}N

min
σ∈BN
〈A, σ⊗p〉 = min

σ∈BN

∑
1≤i1,...,ip≤N

Ai1,...,ipσi1 · · ·σip

When p = 2

min
σ∈BN

σT Aσ.
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Optimizing a Hamiltonian of a p-spin model. Spherical

A = (Ai1,...,ip ,1 ≤ i1, . . . , ip ≤ N) ∈ RN⊗p i.i.d. N (0,N−
p−1

2 ).

Optimization over sphere SN , {x ∈ RN : ‖x‖2 =
√

N}.

min
σ∈SN
〈A, σ⊗p〉 = min

σ∈SN

∑
1≤i1,...,ip≤N

Ai1,...,ipσi1 · · ·σip

When p = 2 (easy),

min
σ∈SN

σT Aσ.
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Background

With high probability the limits exists and can be computed
Talagrand [2005], confirming prediction by Parisi [1979].
Panchenko’s book [2013]

lim
N→∞

1
N

min
σ∈BN
〈A, σ⊗p〉 = η∗Bin < 0

lim
N→∞

1
N

min
σ∈SN
〈A, σ⊗p〉 = η∗Sp < 0.

η∗Bin ≈ −0.763166 when p = 2.
Algorithmic goal: find σAlg ∈ BN or ∈ SN (depending on
the problem) such that w.h.p. as N →∞.

1
N
〈A, σ⊗p

Alg〉 ≤ −η∗ + ε,

for every ε > 0.
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Existing algorithms

Montanari [2018] Solved the problem when p = 2.
Assumes unproven conjecture of no OGP.
Subag [2018] Same for (mixture of) spherical p-spin:
optimization over SN = {σ ∈ RN : ‖σ‖2 =

√
N} when no

OGP.
Both motivated by iteration scheme proposed by
Bolthausen [2014]
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OGP. Definition

Fix two independent copies A, Â ∈ RN⊗p i.i.d. N (0,N−
p−1

2 ).
Interpolate the instances A = {

√
1− τA +

√
τ Â}.

Definition
The set A satisfies the Overlap Gap Property (OGP) with
domain XN ⊂ RN , and parameters µ > 0,0 < ν1 < ν2 < 1 if for
every 0 ≤ τ1, τ2 ≤ 1 and every σ1, σ2 ∈ XN satisfying

1
N
〈Aτj , σ

⊗p
j 〉 ≤ inf

σ∈XN

1
N
〈Aτj , σ

⊗p〉+ µ, j = 1,2,

it holds

|〈σ1, σ2〉|
N

∈ [0, ν1] ∪ [ν2,1].
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OGP. Facts and conjectures

Theorem (Auffinger & Chen [2018], G, Panchenko & Rahman
[2019])

OGP holds for every p ≥ 4 for the domains BN = {−1,1}N and
SN = {σ ∈ RN : ‖σ‖2 =

√
N}

p = 2 conjectured not to exhibit OGP for BN .
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Algorithms: Low-degree polynomials

Fix N degree-D polynomials

Pj(x1, . . . , xNp ) =
∑

|S|≤D,S⊂[Np]

βj,S

∏
i∈S

xi , 1 ≤ j ≤ N.

The proposed solution is P(A) =
(
Pj(A),1 ≤ j ≤ N

)
.

Round if necessary.

Algorithms which can be modeled by low degree
polynomials.

Local algorithms on graphs
Spectral methods
Approximate Message Passing
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Main result. Failure of low-degree polynomials. Spin glasses

Low-D polymial based methods fails to optimize p-spin
spherical model with high probability promise.

Theorem (G, Jagannath & Wein [2020], some technical
assumptions skipped)

Fix even p ≥ 4. Suppose E‖P(A)‖22 = N. Let
Q(A) =

√
NP(A)/‖P(A)‖2. If

P
(

N−1〈A,Q⊗p(A)〉 ≤ η
)
≥ 1− (1/4) exp(−2D),

then η ≥ η∗ + µ, where µ comes from OGP. I.e. degree-D
polynomials cannot optimize with ”high” promise.

Similar result holds for Ising model.
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Main result. Failure of low-degree polynomials. Largest i.s. in
G(N,d/N)

Consider any degree-D polynomial P(A) ∈ RN where A –
adjacency matrix of G(N,d/N).
Rounding: a) select all nodes i with Pi(A) ≥ 1; b) delete
nodes violating ind set constraint.

Theorem (G, Jagannath & Wein [2020], some technical
assumptions skipped)
Consider the independent set produced by the degree-D
polynomial P(A) plus rounding. Suppose |I| = β(log d/d)N
with probability at least 1− exp (−Ω(D log N)). Then for all
large enough d β ≤ β∗OGP.

I.e. degree-D polynomials cannot produce an ind set above
OGP threshold with ”high promise”.
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Proof idea: stability of algorithms

Proof by contradiction. µ > 0,0 < ν1 < ν2 < 1 –
parameters of OGP. Suppose σAlg(A) satisfies
N−1〈A, σ⊗p

Alg〉 < η∗ + µ with ”good enough” probability.
Key property – Stability. Small changes in A result in small
changes in σAlg – most difficult part. Stability is established
using noise sensitivity type arguments.
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Noise sensitivity

Suppose A, Â ∈ RN⊗p are gaussian ρ-correlated. Suppose
f = (f1, . . . , fN) : RN⊗p → RN consists of degree D
polynomials and E[‖f (A)‖22] = E[‖f (Â)‖22] = 1.

Theorem

For any t ≥ (6e)D

P
(
‖f (A)− f (Â)‖22 ≥ 2t(1− ρD)

)
≤ exp

(
− D

3e
t

1
D

)
.
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Proof idea: stability of algorithms

Recall interpolation Aτ ,
√

1− τA +
√
τ Â, τ ∈ [0,1].

If τ2 − τ1 is ”small” then ‖σAlg(Aτ2)− σAlg(Aτ1)‖2 is small as
well – stability
That is N−1〈σAlg(Aτ ), σAlg(A0)〉 changes continuously in τ .

On the other hand, when A and Â are independent
N−1〈σAlg(A0), σAlg(A1)〉 is o(1) and thus < ν1.
Thus for some τ , N−1〈σAlg(Aτ ), σAlg(A0)〉 ∈ (ν1, ν2) –
contradiction to µ-optimality of σAlg.
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N−1〈σAlg(A0), σAlg(A1)〉 is o(1) and thus < ν1.
Thus for some τ , N−1〈σAlg(Aτ ), σAlg(A0)〉 ∈ (ν1, ν2) –
contradiction to µ-optimality of σAlg.

23 / 26



Proof idea: stability of algorithms

Recall interpolation Aτ ,
√

1− τA +
√
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Other problems and algorithms ruled out by OGP

Local algorithms for G(N,d/N) are half-optimal at best
Rahman & Virag [2017] (improving on G & Sudan [2017]).
Finding a near-satisfying assignment of a random
NAE-K-SAT problem G & Sudan [2017] using sequential
local algorithms.
WALKSAT for random NAE-K-SAT problem Coja-Oghlan,
Haqshenas & Hetterich [2017]
Finding a large cut of a random sparse hypergraph using
local algorithms Chen, G, Panchenko & Rahman [2019]
Finding a large ind set in G(N,d/N) using quantum local
algorithm (QAOA) G, Farhi & Gutmann [2020]
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Problems in high-dimensional inference exhibiting OGP

High-dimensional regression below LASSO threshold G &
Zadik [2017]
Planted Clique Problem G & Zadik [2019]
Maximum sub-matrix of a random matrix G & Li [2018]
Sparse PCA Arous, Wein & Zadik [2020], G, Jagannath &
Sen [2020]
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