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Two-colorable hypergraphs
m(k) - the minimum number of edges in a k-graph that is not two colorable.

Erdős 1963, 1964

2k−1 < m(k) < α · k2 · 2k

Erdős, Lovász 1975
”Perhaps k · 2k is the correct order of magnitude for m(k).”

Radhakrishnan, Srinivasan 2000

β ·
√

k
log(k)

· 2k < m(k)

Erdős 1964

m(k) < α · k2 · 2k

Observation
Lower bound, can be improved for (pseudo-)random k-graphs.
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Erdős 1963, 1964

2k−1 < m(k) < α · k2 · 2k
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Sparse/Dense constraints

Lovász Local Lemma
Any k-graph with the maximum edge degree at most

2k−1 · exp(−1)

is two-colorable.

k-graphs that are evenly distributed on large number of vertices
are easy.

Radhakrishnan, Shannigrahi, Venkat 2015

A k-graph with at most k2/t vertices and at most

2k−1 · exp(t/8)

edges is equitably two-colorable.

(Erdős’ upper bound is built on k2/2 vertices.)
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Nonuniform hypergraphs
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The right question

q(H) := E[XH ] =
∑
e∈H

2−|e|+1

XH = #{mono edges in the naive random coloring}

Erdős, Lovász 1975
Does there exist an unbounded function f (k) such that any k+-graph H that
satisfies

q(H) ¬ f (k)
is two colorable?

Beck 1978
Yes! Take f (k) ≈ log∗(k).

Duraj, Gutowski, JK 2018
f (k) ≈ log(k) works as well.
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(k , k ′)-graphs k < k ′

H is a (k, k ′)-graph if every edge of H is of size either k or k ′.

the weakest link of the proof
For every long edge f we define r.v. Xf . We manage to impose constraints

E[Xf ] ¬ 2q and Xf ¬ qk.

Then we work with the worst-case distribution satisfying above conditions.

Once again ...
We can improve lower bounds for H in which XH is concentrated.

In the uniform case ...
For k-graphs we have stronger constraint Xf ¬ k.
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(k , k ′)-graphs: what is the worst k ′?

k ′

E[X ]
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k/ log(k)
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Landscape of the worst instance of (k , k ′)-graphs
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Upper bounds

k-graphs (Erdős 1964)

m(k) < α · k2 · 2k−1

q(k) < α · k2

k+-graphs

q(k) < α · k2 · (1/2+ o(1))

(Bi-uniform hypergraph with k ′ = k2/4 on k2/2 vertices)

THANK YOU
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