Bi-uniform Property B

Jakub Kozik

joint work with: Lech Duraj, Grzegorz Gutowski, Dmitry Shabanov

Theoretical Computer Science Jagiellonian University

Moscow Institute of Physics and Technology

Probabilistic Combinatorics Online 2020 24 September 2020

Bi-uniform Property B

k-graph

every egde of size k

k-graph

every egde of size k

k-graph

every egde of size k

proper coloring

no monochromatic edges

k-graph

every egde of size k

proper coloring

no monochromatic edges

k-graph

every egde of size k

proper coloring

no monochromatic edges

m(k) - the minimum number of edges in a k-graph that is not two colorable.

m(k) - the minimum number of edges in a k-graph that is not two colorable.

Erdős 1963, 1964

$$2^{k-1} < m(k) < \alpha \cdot k^2 \cdot 2^k$$

m(k) - the minimum number of edges in a k-graph that is not two colorable.

Erdős 1963, 1964

$$2^{k-1} < m(k) < \alpha \cdot k^2 \cdot 2^k$$

Erdős, Lovász 1975

"Perhaps $k \cdot 2^k$ is the correct order of magnitude for m(k)."

m(k) - the minimum number of edges in a k-graph that is not two colorable.

Erdős 1963, 1964

$$2^{k-1} < m(k) < \alpha \cdot k^2 \cdot 2^k$$

Erdős, Lovász 1975

"Perhaps $k \cdot 2^k$ is the correct order of magnitude for m(k)."

Radhakrishnan, Srinivasan 2000

$$\beta \cdot \sqrt{\frac{k}{\log(k)} \cdot 2^k} < m(k)$$

m(k) - the minimum number of edges in a k-graph that is not two colorable.

Erdős 1963, 1964

$$2^{k-1} < m(k) < \alpha \cdot k^2 \cdot 2^k$$

Erdős, Lovász 1975

"Perhaps $k \cdot 2^k$ is the correct order of magnitude for m(k)."

Radhakrishnan, Srinivasan 2000

$$\beta \cdot \sqrt{\frac{k}{\log(k)}} \cdot 2^k < m(k)$$

Erdős 1964
$$m(k) < \alpha \cdot k^2 \cdot 2^k$$

m(k) - the minimum number of edges in a k-graph that is not two colorable.

Erdős 1963, 1964

$$2^{k-1} < m(k) < \alpha \cdot k^2 \cdot 2^k$$

Erdős, Lovász 1975

"Perhaps $k \cdot 2^k$ is the correct order of magnitude for m(k)."

m(k) - the minimum number of edges in a k-graph that is not two colorable.

Erdős 1963, 1964

$$2^{k-1} < m(k) < \alpha \cdot k^2 \cdot 2^k$$

Erdős, Lovász 1975

"Perhaps $k \cdot 2^k$ is the correct order of magnitude for m(k)."

Observation

Lower bound, can be improved for (pseudo-)random k-graphs.

Lovász Local Lemma

Any k-graph with the maximum edge degree at most

$$2^{k-1} \cdot \exp(-1)$$

is two-colorable.

Lovász Local Lemma

Any k-graph with the maximum edge degree at most

$$2^{k-1} \cdot \exp(-1)$$

is two-colorable.

k-graphs that are <u>evenly</u> distributed on <u>large</u> number of vertices are <u>easy</u>.

Lovász Local Lemma

Any k-graph with the maximum edge degree at most

$$2^{k-1} \cdot \exp(-1)$$

is two-colorable.

k-graphs that are <u>evenly</u> distributed on <u>large</u> number of vertices are <u>easy</u>.

Radhakrishnan, Shannigrahi, Venkat 2015

A k-graph with at most k^2/t vertices and at most

 $2^{k-1} \cdot \exp(t/8)$

edges is equitably two-colorable.

Lovász Local Lemma

Any k-graph with the maximum edge degree at most

$$2^{k-1} \cdot \exp(-1)$$

is two-colorable.

k-graphs that are <u>evenly</u> distributed on <u>large</u> number of vertices are <u>easy</u>.

Radhakrishnan, Shannigrahi, Venkat 2015

A k-graph with at most k^2/t vertices and at most

 $2^{k-1} \cdot \exp(t/8)$

edges is equitably two-colorable.

(Erdős' upper bound is built on $k^2/2$ vertices.)

Bi-uniform Property B

Nonuniform hypergraphs

Nonuniform hypergraphs

edges of size at least k

Nonuniform hypergraphs

edges of size at least k

 k^+ -graphs

$$q(H) := \mathbb{E}[X_H] = \sum_{e \in H} 2^{-|e|+1}$$

 $X_H = #\{\text{mono edges in the naive random coloring}\}$

$$q(H) := \mathbb{E}[X_H] = \sum_{e \in H} 2^{-|e|+1}$$

Kozik

 $X_H = #\{\text{mono edges in the naive random coloring}\}$

Erdős, Lovász 1975

Does there exist an unbounded function f(k) such that any k^+ -graph H that satisfies

 $q(H) \leq f(k)$

is two colorable?

$$q(H) := \mathbb{E}[X_H] = \sum_{e \in H} 2^{-|e|+1}$$

 $X_H = #\{\text{mono edges in the naive random coloring}\}$

Erdős, Lovász 1975

Does there exist an unbounded function f(k) such that any k^+ -graph H that satisfies

 $q(H) \leq f(k)$

is two colorable?

Beck 1978

Yes! Take $f(k) \approx \log^*(k)$.

$$q(H) := \mathbb{E}[X_H] = \sum_{e \in H} 2^{-|e|+1}$$

 $X_H = #\{\text{mono edges in the naive random coloring}\}$

Erdős, Lovász 1975

Does there exist an unbounded function f(k) such that any k^+ -graph H that satisfies

$$q(H) \leq f(k)$$

is two colorable?

Beck 1978

Yes! Take $f(k) \approx \log^*(k)$.

Duraj, Gutowski, JK 2018

 $f(k) \approx \log(k)$ works as well.

 $k < k' \parallel$

H is a (k, k')-graph if every edge of *H* is of size either *k* or *k'*.

k < k'

H is a (k, k')-graph if every edge of H is of size either k or k'.

the weakest link of the proof

For every long edge f we define r.v. X_f . We manage to impose constraints

 $\mathbb{E}[X_f] \leqslant 2q$ and $X_f \leqslant qk$.

Then we work with the worst-case distribution satisfying above conditions.

k < k'

H is a (k, k')-graph if every edge of H is of size either k or k'.

the weakest link of the proof

For every long edge f we define r.v. X_f . We manage to impose constraints

 $\mathbb{E}[X_f] \leqslant 2q$ and $X_f \leqslant qk$.

Then we work with the worst-case distribution satisfying above conditions.

Once again ...

We can improve lower bounds for H in which X_H is concentrated.

k < k'

H is a (k, k')-graph if every edge of H is of size either k or k'.

the weakest link of the proof

For every long edge f we define r.v. X_f . We manage to impose constraints

 $\mathbb{E}[X_f] \leqslant 2q$ and $X_f \leqslant qk$.

Then we work with the worst-case distribution satisfying above conditions.

Once again ...

We can improve lower bounds for H in which X_H is concentrated.

In the uniform case ...

For k-graphs we have stronger constraint $X_f \leq k$.

Bi-uniform Property B

Bi-uniform Property B

Bi-uniform Property B

Bi-uniform Property B

Bi-uniform Property B

Bi-uniform Property B

Bi-uniform Property B

Bi-uniform Property B

k-graphs (Erdős 1964)

 $m(k) < \alpha \cdot k^2 \cdot 2^{k-1}$ $q(k) < \alpha \cdot k^2$

Bi-uniform Property B

$$egin{aligned} \mathsf{m}(k) < lpha \cdot k^2 \cdot 2^{k-1} \ \mathsf{q}(k) < lpha \cdot k^2 \end{aligned}$$

k⁺-graphs

$$q(k) < \alpha \cdot k^2 \cdot (1/2 + o(1))$$

k-graphs (Erdős 1964)

$$egin{aligned} \mathsf{m}(k) < lpha \cdot k^2 \cdot 2^{k-1} \ \mathsf{q}(k) < lpha \cdot k^2 \end{aligned}$$

 k^+ -graphs

$$q(k) < \alpha \cdot k^2 \cdot (1/2 + o(1))$$

(Bi-uniform hypergraph with $k' = k^2/4$ on $k^2/2$ vertices)

$$egin{aligned} \mathsf{m}(k) < lpha \cdot k^2 \cdot 2^{k-1} \ q(k) < lpha \cdot k^2 \end{aligned}$$

 k^+ -graphs

$$q(k) < \alpha \cdot k^2 \cdot (1/2 + o(1))$$

(Bi-uniform hypergraph with $k' = k^2/4$ on $k^2/2$ vertices)

THANK YOU

Bi-uniform Property B