Bi-uniform Property B

Jakub Kozik
 joint work with: Lech Duraj, Grzegorz Gutowski, Dmitry Shabanov

Theoretical Computer Science
Jagiellonian Univeristy

Moscow Institute of Physics and Technology

Probabilistic Combinatorics Online 2020
24 September 2020

Hypergraphs and coloring

Hypergraphs and coloring

Hypergraphs and coloring

k-graph
every egde of size k

proper coloring

no monochromatic edges

Hypergraphs and coloring

k-graph
every egde of size k

proper coloring

no monochromatic edges

Hypergraphs and coloring

k-graph
every egde of size k

proper coloring

no monochromatic edges

Two-colorable hypergraphs

$m(k)$ - the minimum number of edges in a k-graph that is not two colorable.

Two-colorable hypergraphs

$m(k)$ - the minimum number of edges in a k-graph that is not two colorable.
Erdős 1963, 1964

$$
2^{k-1}<m(k)<\alpha \cdot k^{2} \cdot 2^{k}
$$

Two-colorable hypergraphs

$m(k)$ - the minimum number of edges in a k-graph that is not two colorable.
Erdős 1963, 1964

$$
2^{k-1}<m(k)<\alpha \cdot k^{2} \cdot 2^{k}
$$

Erdős, Lovász 1975
"Perhaps $k \cdot 2^{k}$ is the correct order of magnitude for $m(k) . "$

Two-colorable hypergraphs

$m(k)$ - the minimum number of edges in a k-graph that is not two colorable.
Erdős 1963, 1964

$$
2^{k-1}<m(k)<\alpha \cdot k^{2} \cdot 2^{k}
$$

Erdős, Lovász 1975
"Perhaps $k \cdot 2^{k}$ is the correct order of magnitude for $m(k) . "$
Radhakrishnan, Srinivasan 2000

$$
\beta \cdot \sqrt{\frac{k}{\log (k)}} \cdot 2^{k}<m(k)
$$

Two-colorable hypergraphs

$m(k)$ - the minimum number of edges in a k-graph that is not two colorable.
Erdős 1963, 1964

$$
2^{k-1}<m(k)<\alpha \cdot k^{2} \cdot 2^{k}
$$

Erdős, Lovász 1975
"Perhaps $k \cdot 2^{k}$ is the correct order of magnitude for $m(k) . "$

Radhakrishnan, Srinivasan 2000

$$
\beta \cdot \sqrt{\frac{k}{\log (k)}} \cdot 2^{k}<m(k)
$$

Erdős 1964

$$
m(k)<\alpha \cdot k^{2} \cdot 2^{k}
$$

Two-colorable hypergraphs

$m(k)$ - the minimum number of edges in a k-graph that is not two colorable.
Erdős 1963, 1964

$$
2^{k-1}<m(k)<\alpha \cdot k^{2} \cdot 2^{k}
$$

Erdős, Lovász 1975
"Perhaps $k \cdot 2^{k}$ is the correct order of magnitude for $m(k) . "$

Radhakrishnan, Srinivasan 2000

$$
\beta \cdot \sqrt{\frac{k}{\log (k)}} \cdot 2^{k}<m(k)
$$

Erdős 1964

$$
m(k)<\alpha \cdot k^{2} \cdot 2^{k}
$$

Two-colorable hypergraphs

$m(k)$ - the minimum number of edges in a k-graph that is not two colorable.
Erdős 1963, 1964

$$
2^{k-1}<m(k)<\alpha \cdot k^{2} \cdot 2^{k}
$$

Erdős, Lovász 1975
"Perhaps $k \cdot 2^{k}$ is the correct order of magnitude for $m(k) . "$
Radhakrishnan, Srinivasan 2000

$$
\beta \cdot \sqrt{\frac{k}{\log (k)}} \cdot 2^{k}<m(k)
$$

Erdős 1964

$$
m(k)<\alpha \cdot k^{2} \cdot 2^{k}
$$

Observation

Lower bound, can be improved for (pseudo-)random k-graphs.

Sparse/Dense constraints

Lovász Local Lemma

Any k-graph with the maximum edge degree at most

$$
2^{k-1} \cdot \exp (-1)
$$

is two-colorable.

Sparse/Dense constraints

Lovász Local Lemma

Any k-graph with the maximum edge degree at most

$$
2^{k-1} \cdot \exp (-1)
$$

is two-colorable.
k-graphs that are evenly distributed on large number of vertices are easy.

Sparse/Dense constraints

Lovász Local Lemma

Any k-graph with the maximum edge degree at most

$$
2^{k-1} \cdot \exp (-1)
$$

is two-colorable.
k-graphs that are evenly distributed on large number of vertices are easy.

Radhakrishnan, Shannigrahi, Venkat 2015

A k-graph with at most k^{2} / t vertices and at most

$$
2^{k-1} \cdot \exp (t / 8)
$$

edges is equitably two-colorable.

Sparse/Dense constraints

Lovász Local Lemma

Any k-graph with the maximum edge degree at most

$$
2^{k-1} \cdot \exp (-1)
$$

is two-colorable.
k-graphs that are evenly distributed on large number of vertices are easy.

Radhakrishnan, Shannigrahi, Venkat 2015

A k-graph with at most k^{2} / t vertices and at most

$$
2^{k-1} \cdot \exp (t / 8)
$$

edges is equitably two-colorable.
(Erdős' upper bound is built on $k^{2} / 2$ vertices.)

Nonuniform hypergraphs

Nonuniform hypergraphs

$$
\text { edges of size at least } k
$$

Nonuniform hypergraphs

edges of size at least k

$$
k^{+} \text {-graphs }
$$

The right question

$$
q(H):=\mathbb{E}\left[X_{H}\right]=\sum_{e \in H} 2^{-|e|+1}
$$

$X_{H}=\#\{$ mono edges in the naive random coloring $\}$

The right question

$$
q(H):=\mathbb{E}\left[X_{H}\right]=\sum_{e \in H} 2^{-|e|+1}
$$

$X_{H}=\#\{$ mono edges in the naive random coloring $\}$

Erdős, Lovász 1975

Does there exist an unbounded function $f(k)$ such that any k^{+}-graph H that satisfies

$$
q(H) \leqslant f(k)
$$

is two colorable?

The right question

$$
q(H):=\mathbb{E}\left[X_{H}\right]=\sum_{e \in H} 2^{-|e|+1}
$$

$X_{H}=\#\{$ mono edges in the naive random coloring $\}$

Erdős, Lovász 1975

Does there exist an unbounded function $f(k)$ such that any k^{+}-graph H that satisfies

$$
q(H) \leqslant f(k)
$$

is two colorable?
Beck 1978
Yes! Take $f(k) \approx \log ^{*}(k)$.

The right question

$$
q(H):=\mathbb{E}\left[X_{H}\right]=\sum_{e \in H} 2^{-|e|+1}
$$

$X_{H}=\#\{$ mono edges in the naive random coloring $\}$

Erdős, Lovász 1975

Does there exist an unbounded function $f(k)$ such that any k^{+}-graph H that satisfies

$$
q(H) \leqslant f(k)
$$

is two colorable?

Beck 1978
Yes! Take $f(k) \approx \log ^{*}(k)$.

Duraj, Gutowski, JK 2018
$f(k) \approx \log (k)$ works as well.

$\left(k, k^{\prime}\right)$-graphs

H is a $\left(k, k^{\prime}\right)$-graph if every edge of H is of size either k or k^{\prime}.

$\left(k, k^{\prime}\right)$-graphs

H is a $\left(k, k^{\prime}\right)$-graph if every edge of H is of size either k or k^{\prime}.
the weakest link of the proof
For every long edge f we define r.v. X_{f}. We manage to impose constraints

$$
\mathbb{E}\left[X_{f}\right] \leqslant 2 q \quad \text { and } \quad X_{f} \leqslant q k .
$$

Then we work with the worst-case distribution satisfying above conditions.

$\left(k, k^{\prime}\right)$-graphs

H is a $\left(k, k^{\prime}\right)$-graph if every edge of H is of size either k or k^{\prime}.
the weakest link of the proof
For every long edge f we define riv. X_{f}. We manage to impose constraints

$$
\mathbb{E}\left[X_{f}\right] \leqslant 2 q \quad \text { and } \quad X_{f} \leqslant q k .
$$

Then we work with the worst-case distribution satisfying above conditions.

Once again ...

We can improve lower bounds for H in which X_{H} is concentrated.

$\left(k, k^{\prime}\right)$-graphs

H is a $\left(k, k^{\prime}\right)$-graph if every edge of H is of size either k or k^{\prime}.
the weakest link of the proof
For every long edge f we define riv. X_{f}. We manage to impose constraints

$$
\mathbb{E}\left[X_{f}\right] \leqslant 2 q \quad \text { and } \quad X_{f} \leqslant q k .
$$

Then we work with the worst-case distribution satisfying above conditions.

Once again ...

We can improve lower bounds for H in which X_{H} is concentrated.

In the uniform case ...

For k-graphs we have stronger constraint $X_{f} \leqslant k$.

$\left(k, k^{\prime}\right)$-graphs: what is the worst k^{\prime} ?

$\left(k, k^{\prime}\right)$-graphs: what is the worst k^{\prime} ?

$\left(k, k^{\prime}\right)$-graphs: what is the worst k^{\prime} ?

$\left(k, k^{\prime}\right)$-graphs: what is the worst k^{\prime} ?

Landscape of the worst instance of $\left(k, k^{\prime}\right)$-graphs

$$
\frac{k^{\prime 2}}{2}
$$

Landscape of the worst instance of $\left(k, k^{\prime}\right)$-graphs

$\frac{k^{\prime 2}}{2}$

Landscape of the worst instance of $\left(k, k^{\prime}\right)$-graphs

Landscape of the worst instance of $\left(k, k^{\prime}\right)$-graphs

Landscape of the worst instance of $\left(k, k^{\prime}\right)$-graphs

Landscape of the worst instance of $\left(k, k^{\prime}\right)$-graphs

Landscape of the worst instance of $\left(k, k^{\prime}\right)$-graphs

Landscape of the worst instance of $\left(k, k^{\prime}\right)$-graphs

Upper bounds

k-graphs (Erdős 1964)

$$
\begin{gathered}
m(k)<\alpha \cdot k^{2} \cdot 2^{k-1} \\
q(k)<\alpha \cdot k^{2}
\end{gathered}
$$

Upper bounds

k-graphs (Erdős 1964)

$$
\begin{gathered}
m(k)<\alpha \cdot k^{2} \cdot 2^{k-1} \\
q(k)<\alpha \cdot k^{2}
\end{gathered}
$$

k^{+}-graphs

$$
q(k)<\alpha \cdot k^{2} \cdot(1 / 2+o(1))
$$

Upper bounds

k-graphs (Erdős 1964)

$$
\begin{gathered}
m(k)<\alpha \cdot k^{2} \cdot 2^{k-1} \\
q(k)<\alpha \cdot k^{2}
\end{gathered}
$$

k^{+}-graphs

$$
q(k)<\alpha \cdot k^{2} \cdot(1 / 2+o(1))
$$

(Bi-uniform hypergraph with $k^{\prime}=k^{2} / 4$ on $k^{2} / 2$ vertices)

Upper bounds

k-graphs (Erdős 1964)

$$
\begin{gathered}
m(k)<\alpha \cdot k^{2} \cdot 2^{k-1} \\
q(k)<\alpha \cdot k^{2}
\end{gathered}
$$

k^{+}-graphs

$$
q(k)<\alpha \cdot k^{2} \cdot(1 / 2+o(1))
$$

(Bi-uniform hypergraph with $k^{\prime}=k^{2} / 4$ on $k^{2} / 2$ vertices)

THANK YOU

