Greedy maximal independent sets via local limits

Peleg Michaeli
Tel Aviv University
Probabilistic Combinatorics Online, 25 September 2020

Joint work with Michael Krivelevich, Tamás Mészáros and Clara Shikhelman
31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods
for the Analysis of Algorithms (AofA 2020)

Parking cars on a cycle

Independent sets

An independent set is a set of vertices in a graph, no two of which are adjacent.

Independent sets

An independent set is a set of vertices in a graph, no two of which are adjacent.

- Finding maximum independent sets is very hard

Independent sets

An independent set is a set of vertices in a graph, no two of which are adjacent.

- Finding maximum independent sets is very hard
- Finding maximal independent sets is very easy

Greedy MIS

Greedy MIS

Greedy MIS

Greedy MIS

Greedy MIS

Greedy MIS

Greedy MIS

Greedy MIS

Greedy MIS

Greedy MIS

Greedy MIS

Greedy MIS - performance

Greedy MIS - performance

Greedy MIS - performance

Greedy MIS - performance

Greedy MIS - performance

Greedy MIS - performance

Greedy MIS - performance

Greedy MIS - performance

Greedy MIS - performance

Random greedy MIS - sequential

Random greedy MIS - sequential

Random greedy MIS - sequential

Random greedy MIS - sequential

Random greedy MIS - sequential

Random greedy MIS - sequential

Random greedy MIS - sequential

Random greedy MIS - sequential

Random greedy MIS - sequential

Random greedy MIS - sequential

Random greedy MIS - sequential

Random greedy MIS - sequential

Greedy independence ratio - previous work

Let $\mathbf{I}(G)$ be the yielded independent set, and let $\iota(G)=|\mathbf{I}(G)| /|V(G)|$.

Greedy independence ratio - previous work

Let $\mathbf{I}(G)$ be the yielded independent set, and let $\iota(G)=|\mathbf{I}(G)| /|V(G)|$.

Greedy independence ratio - previous work

randomvariable

Let $\mathbf{I}(G)$ be the yielded independent set, and let $\iota(G)=|\mathbf{I}(G)| /|V(G)|$.

Flory '39, Page '59 $\quad \iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right)$

Greedy independence ratio - previous work

Let $\mathbf{I}(G)$ be the yielded independent set, and let $\iota(G)=|\mathbf{I}(G)| /|V(G)|$.

Flory '39, Page '59 $\quad \iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right)$
McDiarmid '84 $\quad \iota(G(n, d / n)) \rightarrow \log (1+d) / d$

Greedy independence ratio - previous work

randomvariable

Let $\mathbf{I}(G)$ be the yielded independent set, and let $\iota(G)=|\mathbf{I}(G)| /|V(G)|$.

Flory '39, Page '59 $\quad \iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right)$
McDiarmid '84 $\quad \iota(G(n, d / n)) \rightarrow \log (1+d) / d$
Wormald '95

$$
\iota\left(\mathcal{G}_{n, d}\right) \rightarrow \frac{1}{2}\left(1-(d-1)^{-2 /(d-2)}\right)
$$

Greedy independence ratio - previous work

randomvariable

Let $\mathbf{I}(G)$ be the yielded independent set, and let $\iota(G)=|\mathbf{I}(G)| /|V(G)|$.

Flory '39, Page '59 $\quad \iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right)$
McDiarmid ' $84 \quad \iota(G(n, d / n)) \rightarrow \log (1+d) / d$
Wormald '95
$\iota\left(\mathcal{G}_{n, d}\right) \rightarrow \frac{1}{2}\left(1-(d-1)^{-2 /(d-2)}\right)$
Lauer-Wormald '07 (same for d-regular graphs with girth $\rightarrow \infty$)

Greedy independence ratio - previous work

randomvariable

Let $\mathbf{I}(G)$ be the yielded independent set, and let $\iota(G)=|\mathbf{I}(G)| /|V(G)|$.

Flory '39, Page '59 $\quad \iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right)$
McDiarmid '84 $\quad \iota(G(n, d / n)) \rightarrow \log (1+d) / d$
Wormald '95
$\iota\left(\mathcal{G}_{n, d}\right) \rightarrow \frac{1}{2}\left(1-(d-1)^{-2 /(d-2)}\right)$
Lauer-Wormald '07 (same for d-regular graphs with girth $\rightarrow \infty$)
BJL '17, BJM '17 random graphs with given degree sequence
(Random) greedy MIS - parallel

Random labelling

Random labelling

Random labelling

Random labelling

Random labelling

Random labelling

Random labelling

Random labelling

Random labelling

Random labelling

Random labelling

Random labelling

General framework

Let G_{n} be a graph sequence satisfying $\left|G_{n}\right| \rightarrow \infty$.

- We wish to calculate the asymptotics of $\iota\left(G_{n}\right)$.

General framework

Let G_{n} be a graph sequence satisfying $\left|G_{n}\right| \rightarrow \infty$.

- We wish to calculate the asymptotics of $\iota\left(G_{n}\right)$.
- We approximate $\mathbb{E}\left[\iota\left(G_{n}\right)\right]=\mathbb{P}\left(\rho_{n} \in \mathbf{I}\left(G_{n}\right)\right)$ for ρ_{n} chosen uniformly.

General framework

Let G_{n} be a graph sequence satisfying $\left|G_{n}\right| \rightarrow \infty$.

- We wish to calculate the asymptotics of $\iota\left(G_{n}\right)$.
- We approximate $\mathbb{E}\left[\iota\left(G_{n}\right)\right]=\mathbb{P}\left(\rho_{n} \in \mathbf{I}\left(G_{n}\right)\right)$ for ρ_{n} chosen uniformly.
- We hope that this is determined by a small neighbourhood of ρ_{n}.

General framework

Let G_{n} be a graph sequence satisfying $\left|G_{n}\right| \rightarrow \infty$.

- We wish to calculate the asymptotics of $\iota\left(G_{n}\right)$.
- We approximate $\mathbb{E}\left[\iota\left(G_{n}\right)\right]=\mathbb{P}\left(\rho_{n} \in \mathbf{I}\left(G_{n}\right)\right)$ for ρ_{n} chosen uniformly.
- We hope that this is determined by a small neighbourhood of ρ_{n}.
- Decay of correlation $\Longrightarrow \iota\left(G_{n}\right) \sim \mathbb{E}\left[\iota\left(G_{n}\right)\right]$ a.a.s.

General framework

Let G_{n} be a graph sequence satisfying $\left|G_{n}\right| \rightarrow \infty$.

- We wish to calculate the asymptotics of $\iota\left(G_{n}\right)$.
- We approximate $\mathbb{E}\left[\iota\left(G_{n}\right)\right]=\mathbb{P}\left(\rho_{n} \in \mathbf{I}\left(G_{n}\right)\right)$ for ρ_{n} chosen uniformly.
- We hope that this is determined by a small neighbourhood of ρ_{n}.
- Decay of correlation $\Longrightarrow \iota\left(G_{n}\right) \sim \mathbb{E}\left[\iota\left(G_{n}\right)\right]$ a.a.s.
- This local view of ρ_{n} is captured by the local limit of G_{n}.

General framework

Let G_{n} be a graph sequence satisfying $\left|G_{n}\right| \rightarrow \infty$.

- We wish to calculate the asymptotics of $\iota\left(G_{n}\right)$.
- We approximate $\mathbb{E}\left[\iota\left(G_{n}\right)\right]=\mathbb{P}\left(\rho_{n} \in \mathbf{I}\left(G_{n}\right)\right)$ for ρ_{n} chosen uniformly.
- We hope that this is determined by a small neighbourhood of ρ_{n}.
- Decay of correlation $\Longrightarrow \iota\left(G_{n}\right) \sim \mathbb{E}\left[\iota\left(G_{n}\right)\right]$ a.a.s.
- This local view of ρ_{n} is captured by the local limit of G_{n}.
- Develop a machinery to calculate the probability that the root of the local limit is red.

Local limits (a.k.a. Benjamini-Schramm Limits)

We say that a (random) graph sequence G_{n} converges locally to a (random) rooted graph (U, ρ) if for every $r \geq 0$ the ball $B_{G_{n}}\left(\rho_{n}, r\right)$ converges in distribution to $B_{U}(\rho, r)$, where ρ_{n} is a uniform vertex of G_{n}.

Local limits (a.k.a. Benjamini-Schramm Limits)

We say that a (random) graph sequence G_{n} converges locally to a (random) rooted graph (U, ρ) if for every $r \geq 0$ the ball $B_{G_{n}}\left(\rho_{n}, r\right)$ converges in distribution to $B_{U}(\rho, r)$, where ρ_{n} is a uniform vertex of G_{n}.

Local limits (a.k.a. Benjamini-Schramm Limits)

We say that a (random) graph sequence G_{n} converges locally to a (random) rooted graph (U, ρ) if for every $r \geq 0$ the ball $B_{G_{n}}\left(\rho_{n}, r\right)$ converges in distribution to $B_{U}(\rho, r)$, where ρ_{n} is a uniform vertex of G_{n}.

Local limits (a.k.a. Benjamini-Schramm Limits)

We say that a (random) graph sequence G_{n} converges locally to a (random) rooted graph (U, ρ) if for every $r \geq 0$ the ball $B_{G_{n}}\left(\rho_{n}, r\right)$ converges in distribution to $B_{U}(\rho, r)$, where ρ_{n} is a uniform vertex of G_{n}.

Local limits (a.k.a. Benjamini-Schramm Limits)

We say that a (random) graph sequence G_{n} converges locally to a (random) rooted graph (U, ρ) if for every $r \geq 0$ the ball $B_{G_{n}}\left(\rho_{n}, r\right)$ converges in distribution to $B_{U}(\rho, r)$, where ρ_{n} is a uniform vertex of G_{n}.

Local limits (a.k.a. Benjamini-Schramm Limits)

We say that a (random) graph sequence G_{n} converges locally to a (random) rooted graph (U, ρ) if for every $r \geq 0$ the ball $B_{G_{n}}\left(\rho_{n}, r\right)$ converges in distribution to $B_{U}(\rho, r)$, where ρ_{n} is a uniform vertex of G_{n}.

Local limits (a.k.a. Benjamini-Schramm Limits)

We say that a (random) graph sequence G_{n} converges locally to a (random) rooted graph (U, ρ) if for every $r \geq 0$ the ball $B_{G_{n}}\left(\rho_{n}, r\right)$ converges in distribution to $B_{U}(\rho, r)$, where ρ_{n} is a uniform vertex of G_{n}.

Local limits (a.k.a. Benjamini-Schramm Limits)

We say that a (random) graph sequence G_{n} converges locally to a (random) rooted graph (U, ρ) if for every $r \geq 0$ the ball $B_{G_{n}}\left(\rho_{n}, r\right)$ converges in distribution to $B_{U}(\rho, r)$, where ρ_{n} is a uniform vertex of G_{n}.

Local limits (a.k.a. Benjamini-Schramm Limits)

We say that a (random) graph sequence G_{n} converges locally to a (random) rooted graph (U, ρ) if for every $r \geq 0$ the ball $B_{G_{n}}\left(\rho_{n}, r\right)$ converges in distribution to $B_{U}(\rho, r)$, where ρ_{n} is a uniform vertex of G_{n}.

Examples

- $P_{n}, C_{n} \xrightarrow{\text { loc }} \mathbb{Z}$
- $[n]^{d} \xrightarrow{\text { loc }} \mathbb{Z}^{d}$
- $G(n, d / n) \xrightarrow{\text { loc }} \mathcal{T}_{d}$, a Galton-Watson Pois (d) tree
- $G_{n, d} \xrightarrow{\text { loc }}$ the d-regular tree
- Uniform random tree $T_{n} \xrightarrow{\text { loc }} \hat{\mathcal{T}}_{1}$, a size-biased GW Pois(1) tree
- Finite d-ary balanced tree $\xrightarrow{\text { loc }}$ the canopy tree

Convergence of the greedy independence ratio

Say that G_{n} has subfactorial path growth if the expected number of paths from a typical vertex is subfactorial in their length.

Convergence of the greedy independence ratio

Say that G_{n} has subfactorial path growth if the expected number of paths from a typical vertex is subfactorial in their length.
(bounded degree \subsetneq subfactorial path growth)

Convergence of the greedy independence ratio

Say that G_{n} has subfactorial path growth if the expected number of paths from a typical vertex is subfactorial in their length.
(bounded degree \subsetneq subfactorial path growth)

Theorem (Krivelevich, Mészáros, M., Shikhelman '20)
Suppose G_{n} has subfactorial path growth.
If $G_{n} \xrightarrow{\text { loc }}(U, \rho)$ then $\iota\left(G_{n}\right) \rightarrow \iota(U, \rho)$ a.a.s.

Convergence of the greedy independence ratio

Say that G_{n} has subfactorial path growth if the expected number of paths from a typical vertex is subfactorial in their length.
(bounded degree \subsetneq subfactorial path growth)

Theorem (Krivelevich, Mészáros, M., Shikhelman '20)
Suppose G_{n} has subfactorial path growth.
If $G_{n} \xrightarrow{\text { loc }}(U, \rho)$ then $\iota\left(G_{n}\right) \rightarrow \iota(U, \rho)$ a.a.s.

Exploration algorithms / decay of correlation

-	-	,	-				,			,				,			,	-	+		-	,	+		T	+	+		H	\square	\square	+	H
																			-														,
																																	-
																																	-
																																	-
																																	-
																																	-
																																	-
																																	-
																																	,

Exploration algorithms / decay of correlation

Exploration algorithms / decay of correlation

\sec

Exploration algorithms / decay of correlation

Exploration algorithms / decay of correlation

Exploration algorithms / decay of correlation

Locally tree-like

We need to calculate $\iota(U, \rho)$,

Locally tree-like

We need to calculate $\iota(U, \rho)$, but even $\iota\left(\mathbb{Z}^{2}\right)$ is still unknown...

Locally tree-like

We need to calculate $\iota(U, \rho)$, but even $\iota\left(\mathbb{Z}^{2}\right)$ is still unknown... Let us therefore restrict ourselves to locally tree-like graph sequences, i.e., graph sequences for which (U, ρ) is almost surely a tree.

Locally tree-like

We need to calculate $\iota(U, \rho)$, but even $\iota\left(\mathbb{Z}^{2}\right)$ is still unknown... Let us therefore restrict ourselves to locally tree-like graph sequences, i.e., graph sequences for which (U, ρ) is almost surely a tree.

Locally tree-like

We need to calculate $\iota(U, \rho)$, but even $\iota\left(\mathbb{Z}^{2}\right)$ is still unknown... Let us therefore restrict ourselves to locally tree-like graph sequences, i.e., graph sequences for which (U, ρ) is almost surely a tree.

Assuming the children of ρ are roots to independent subtrees, and conditioning on the label of ρ, children of the past are roots to independent processes.

Systems of ordinary differential equations

Let (U, ρ) be a single-type branching process.

Systems of ordinary differential equations

Let (U, ρ) be a single-type branching process.

$$
y(x)=\mathbb{P}\left(\rho \in \mathbf{I}\left(U\left[\mathcal{P}_{\rho}\right]\right) \wedge \sigma_{\rho}<x\right)
$$

Systems of ordinary differential equations

Let (U, ρ) be a single-type branching process.

$$
\begin{aligned}
y(x) & =\mathbb{P}\left(\rho \in \mathbf{I}\left(U\left[\mathcal{P}_{\rho}\right]\right) \wedge \sigma_{\rho}<x\right) \\
& =x \cdot \mathbb{P}\left(\rho \in \mathbf{I}\left(U\left[\mathcal{P}_{\rho}\right]\right) \mid \sigma_{\rho}<x\right) \\
& =\int_{0}^{x} \mathbb{P}\left(\rho \in \mathbf{I}\left(U\left[\mathcal{P}_{\rho}\right]\right) \mid \sigma_{\rho}=z\right) d z
\end{aligned}
$$

Systems of ordinary differential equations

Let (U, ρ) be a single-type branching process.

$$
\begin{aligned}
y(x) & =\mathbb{P}\left(\rho \in \mathbf{I}\left(U\left[\mathcal{P}_{\rho}\right]\right) \wedge \sigma_{\rho}<x\right) \\
& =x \cdot \mathbb{P}\left(\rho \in \mathbf{I}\left(U\left[\mathcal{P}_{\rho}\right]\right) \mid \sigma_{\rho}<x\right) \\
& =\int_{0}^{x} \mathbb{P}\left(\rho \in \mathbf{I}\left(U\left[\mathcal{P}_{\rho}\right]\right) \mid \sigma_{\rho}=z\right) d z \\
y^{\prime}(x) & =\mathbb{P}\left(\rho \in \mathbf{I}\left(U\left[\mathcal{P}_{\rho}\right]\right) \mid \sigma_{\rho}=x\right)
\end{aligned}
$$

Systems of ordinary differential equations

Let (U, ρ) be a single-type branching process.

$$
\begin{aligned}
y(x) & =\mathbb{P}\left(\rho \in \mathbf{I}\left(U\left[\mathcal{P}_{\rho}\right]\right) \wedge \sigma_{\rho}<x\right) \\
& =x \cdot \mathbb{P}\left(\rho \in \mathbf{I}\left(U\left[\mathcal{P}_{\rho}\right]\right) \mid \sigma_{\rho}<x\right) \\
& =\int_{0}^{x} \mathbb{P}\left(\rho \in \mathbf{I}\left(U\left[\mathcal{P}_{\rho}\right]\right) \mid \sigma_{\rho}=z\right) d z \\
y^{\prime}(x) & =\mathbb{P}\left(\rho \in \mathbf{I}\left(U\left[\mathcal{P}_{\rho}\right]\right) \mid \sigma_{\rho}=x\right)
\end{aligned}
$$

Thus, if y is a unique solution of

$$
y^{\prime}(x)=\sum_{\ell \in \mathbb{N}} \mathbb{P}(\xi[<x]=\ell)\left(1-\frac{y(x)}{x}\right)^{\ell}, \quad y(0)=0
$$

then, $\iota(U, \rho)=y(1)$.

Systems of ordinary differential equations

Let (U, ρ) be a single-type branching process.

$$
\begin{aligned}
y(x) & =\mathbb{P}\left(\rho \in \mathbf{I}\left(U\left[\mathcal{P}_{\rho}\right]\right) \wedge \sigma_{\rho}<x\right) \\
& =x \cdot \mathbb{P}\left(\rho \in \mathbf{I}\left(U\left[\mathcal{P}_{\rho}\right]\right) \mid \sigma_{\rho}<x\right) \\
& =\int_{0}^{x} \mathbb{P}\left(\rho \in \mathbf{I}\left(U\left[\mathcal{P}_{\rho}\right]\right) \mid \sigma_{\rho}=z\right) d z \\
y^{\prime}(x) & =\mathbb{P}\left(\rho \in \mathbf{I}\left(U\left[\mathcal{P}_{\rho}\right]\right) \mid \sigma_{\rho}=x\right)
\end{aligned}
$$

Thus, if y is a unique solution of

$$
y^{\prime}(x)=\sum_{\ell \in \mathbb{N}} \mathbb{P}(\xi[<x]=\ell)\left(1-\frac{y(x)}{x}\right)^{\ell}, \quad y(0)=0
$$

then, $\iota(U, \rho)=y(1)$.

Systems of ordinary differential equations

Let (U, ρ) be a (simple) multitype branching process.

$$
\begin{aligned}
y_{k}(x) & =\mathbb{P}\left(\rho \in \mathbf{I}\left(U\left[\mathcal{P}_{\rho}\right]\right) \wedge \sigma_{\rho}<x \mid \tau=k\right) \\
& =x \cdot \mathbb{P}\left(\rho \in \mathbf{I}\left(U\left[\mathcal{P}_{\rho}\right]\right) \mid \sigma_{\rho}<x, \tau=k\right) \\
& \left.=\int_{0}^{x} \mathbb{P}\left(\rho \in \mathbf{I}\left(U\left[\mathcal{P}_{\rho}\right]\right) \mid \sigma_{\rho}=z, \tau=k\right) d z\right\rangle \\
y_{k}^{\prime}(x) & =\mathbb{P}\left(\rho \in \mathbf{I}\left(U\left[\mathcal{P}_{\rho}\right]\right) \mid \sigma_{\rho}=x, \tau=k\right)
\end{aligned}
$$

Thus, if y is a unique solution of

$$
y_{k}^{\prime}(x)=\sum_{\ell \in \mathbb{N} \mathcal{T}} \prod_{j \in \mathcal{T}} \mathbb{P}\left(\xi^{k \rightarrow j}[<x]=\ell_{j}\right)\left(1-\frac{y_{j}(x)}{x}\right)^{\ell_{j}}, \quad y_{k}(0)=0
$$

then, $\iota(U, \rho)=\mathbb{E}\left[y_{k}(1)\right]$.

Application: paths and cycles

P_{n} and C_{n} converge locally to \mathbb{Z}, which can be thought of as a 2-type branching process.

Application: paths and cycles

P_{n} and C_{n} converge locally to \mathbb{Z}, which can be thought of as a 2-type branching process.

Application: paths and cycles

P_{n} and C_{n} converge locally to \mathbb{Z}, which can be thought of as a 2-type branching process.

$$
\begin{array}{ll}
y_{b}^{\prime}(x)=1-y_{b}(x) & \Longrightarrow y_{b}(x)=1-e^{-x} \\
y_{r}^{\prime}(x)=\left(1-y_{b}(x)\right)^{2}=e^{-2 x} & \Longrightarrow y_{r}(x)=\frac{1}{2}\left(1-e^{-2 x}\right)
\end{array}
$$

Application: paths and cycles

P_{n} and C_{n} converge locally to \mathbb{Z}, which can be thought of as a 2-type branching process.

$$
\begin{array}{ll}
y_{b}^{\prime}(x)=1-y_{b}(x) & \Longrightarrow y_{b}(x)=1-e^{-x}, \\
y_{r}^{\prime}(x)=\left(1-y_{b}(x)\right)^{2}=e^{-2 x} & \Longrightarrow y_{r}(x)=\frac{1}{2}\left(1-e^{-2 x}\right) .
\end{array}
$$

Thus

$$
\iota\left(P_{n}\right), \iota\left(C_{n}\right) \rightarrow \iota(\mathbb{Z})=y_{2}(1)=\frac{1}{2}\left(1-e^{-2}\right)
$$

Application: paths and cycles

P_{n} and C_{n} converge locally to \mathbb{Z}, which can be thought of as a 2-type branching process.

$$
\begin{array}{ll}
y_{b}^{\prime}(x)=1-y_{b}(x) & \Longrightarrow y_{b}(x)=1-e^{-x}, \\
y_{r}^{\prime}(x)=\left(1-y_{b}(x)\right)^{2}=e^{-2 x} & \Longrightarrow y_{r}(x)=\frac{1}{2}\left(1-e^{-2 x}\right) .
\end{array}
$$

Thus

$$
\iota\left(P_{n}\right), \iota\left(C_{n}\right) \rightarrow \iota(\mathbb{Z})=y_{2}(1)=\frac{1}{2}\left(1-e^{-2}\right)
$$

$$
\alpha\left(P_{n}\right) / n, \alpha\left(C_{n}\right) / n \rightarrow 1 / 2 .
$$

Application: binomial random graphs

Easy fact: $G(n, d / n)$ converges locally to the $\operatorname{Pois}(d)$ branching process.

$$
y^{\prime}(x)=\sum_{\ell=0}^{\infty} \frac{(d x)^{\ell}}{e^{d x} \ell!}\left(1-\frac{y(x)}{x}\right)^{\ell}=e^{-d y(x)}
$$

hence $y(x)=\log (1+d x) / d$.

Application: binomial random graphs

Easy fact: $G(n, d / n)$ converges locally to the $\operatorname{Pois}(d)$ branching process.

$$
y^{\prime}(x)=\sum_{\ell=0}^{\infty} \frac{(d x)^{\ell}}{e^{d x} \ell!}\left(1-\frac{y(x)}{x}\right)^{\ell}=e^{-d y(x)}
$$

hence $y(x)=\log (1+d x) / d$. Thus

$$
\iota(G(n, d / n)) \rightarrow \iota\left(\mathcal{T}_{d}\right)=y(1)=\frac{\log (1+d)}{d}
$$

Application: binomial random graphs

Easy fact: $G(n, d / n)$ converges locally to the $\operatorname{Pois}(d)$ branching process.

$$
y^{\prime}(x)=\sum_{\ell=0}^{\infty} \frac{(d x)^{\ell}}{e^{d x} \ell!}\left(1-\frac{y(x)}{x}\right)^{\ell}=e^{-d y(x)}
$$

hence $y(x)=\log (1+d x) / d$. Thus

$$
\iota(G(n, d / n)) \rightarrow \iota\left(\mathcal{T}_{d}\right)=y(1)=\frac{\log (1+d)}{d}
$$

$$
\alpha(G(n, d / n)) / n \rightarrow 2 \log d / d \cdot\left(1+o_{d}(1)\right) .
$$

Size-biased Galton-Watson branching processes

Grimmett '80: the sequence of uniform random trees converges locally to the size-biased Galton-Watson Pois(1) tree.

Size-biased Galton-Watson branching processes

Grimmett '80: the sequence of uniform random trees converges locally to the size-biased Galton-Watson Pois(1) tree.

Size-biased Galton-Watson branching processes

Grimmett '80: the sequence of uniform random trees converges locally to the size-biased Galton-Watson Pois(1) tree.

Size-biased Galton-Watson branching processes

Grimmett '80: the sequence of uniform random trees converges locally to the size-biased Galton-Watson Pois(1) tree.

Size-biased Galton-Watson branching processes

Grimmett '80: the sequence of uniform random trees converges locally to the size-biased Galton-Watson Pois(1) tree.

Size-biased Galton-Watson branching processes

Grimmett '80: the sequence of uniform random trees converges locally to the size-biased Galton-Watson Pois(1) tree.

Size-biased Galton-Watson branching processes

Grimmett '80: the sequence of uniform random trees converges locally to the size-biased Galton-Watson Pois(1) tree.

Size-biased Galton-Watson branching processes

Grimmett '80: the sequence of uniform random trees converges locally to the size-biased Galton-Watson Pois(1) tree.

Size-biased Galton-Watson branching processes

Grimmett '80: the sequence of uniform random trees converges locally to the size-biased Galton-Watson Pois(1) tree.

Size-biased Galton-Watson branching processes

Grimmett '80: the sequence of uniform random trees converges locally to the size-biased Galton-Watson Pois(1) tree.

Application: uniform random trees

Let s be the type of a vertex on the spine, and t be the type of a vertex on one of the hanging trees. We have already seen

$$
y_{\mathrm{t}}(x)=\log (1+x),
$$

Application: uniform random trees

Let s be the type of a vertex on the spine, and t be the type of a vertex on one of the hanging trees. We have already seen

$$
y_{\mathrm{t}}(x)=\log (1+x),
$$

and

$$
y_{\mathrm{s}}^{\prime}(x)=\left(1-y_{\mathrm{s}}(x)\right) y_{\mathrm{t}}^{\prime}(x)=\frac{1-y_{\mathrm{s}}(x)}{1+x}
$$

hence $y_{\mathrm{s}}(x)=1-(1+x)^{-1}$, and we get

$$
\iota\left(T_{n}\right) \rightarrow \iota\left(\hat{\mathcal{T}}_{1}\right)=y_{\mathrm{s}}(1)=\frac{1}{2}
$$

Application: uniform random trees

Let s be the type of a vertex on the spine, and t be the type of a vertex on one of the hanging trees. We have already seen

$$
y_{\mathrm{t}}(x)=\log (1+x),
$$

and

$$
y_{\mathrm{s}}^{\prime}(x)=\left(1-y_{\mathrm{s}}(x)\right) y_{\mathrm{t}}^{\prime}(x)=\frac{1-y_{\mathrm{s}}(x)}{1+x}
$$

hence $y_{\mathrm{s}}(x)=1-(1+x)^{-1}$, and we get

$$
\iota\left(T_{n}\right) \rightarrow \iota\left(\hat{\mathcal{T}}_{1}\right)=y_{\mathrm{s}}(1)=\frac{1}{2}
$$

$$
\alpha\left(T_{n}\right) / n \rightarrow W_{0}(1) \approx 0.56714 \ldots
$$

Simulations don't lie

Simulations don't lie

red: $125(50 \%)$, green: $92(\approx 37 \%)$, blue: $32(\approx 13 \%)$, black: 1

Simulations don't lie (but I do)

red: $125(50 \%)$, green: $92(\approx 37 \%)$, blue: $32(\approx 13 \%)$, black: 1

Greedy independence ratio - results

Flory '39, Page '59 $\quad \iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right)$
McDiarmid '84

$$
\iota(G(n, d / n)) \rightarrow \log (1+d) / d
$$

Wormald '95

$$
\iota\left(\mathcal{G}_{n, d}\right) \rightarrow \frac{1}{2}\left(1-(d-1)^{-2 /(d-2)}\right)
$$

Lauer-Wormald '07 (d-regular graphs with girth $\rightarrow \infty$)

Greedy independence ratio - results

Flory '39, Page '59 $\quad \iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right)$
McDiarmid '84

$$
\iota(G(n, d / n)) \rightarrow \log (1+d) / d
$$

Wormald '95

$$
\iota\left(\mathcal{G}_{n, d}\right) \rightarrow \frac{1}{2}\left(1-(d-1)^{-2 /(d-2)}\right)
$$

Lauer-Wormald '07 (d-regular graphs with girth $\rightarrow \infty$)

Greedy independence ratio - results

Flory '39, Page '59 $\quad \iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right)$
McDiarmid '84

$$
\iota(G(n, d / n)) \rightarrow \log (1+d) / d
$$

Wormald '95

$$
\iota\left(\mathcal{G}_{n, d}\right) \rightarrow \frac{1}{2}\left(1-(d-1)^{-2 /(d-2)}\right)
$$

Lauer-Wormald '07 (d-regular graphs with girth $\rightarrow \infty$)

Greedy independence ratio - results

Flory '39, Page '59 $\quad \iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right)$
McDiarmid '84
$\iota(G(n, d / n)) \rightarrow \log (1+d) / d$
Wormald '95

$$
\iota\left(\mathcal{G}_{n, d}\right) \rightarrow \frac{1}{2}\left(1-(d-1)^{-2 /(d-2)}\right)
$$

Lauer-Wormald ' 07 (d-regular graphs with girth $\rightarrow \infty$)

Greedy independence ratio - results

Flory '39, Page '59 $\quad \iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right)$
McDiarmid '84

$$
\iota(G(n, d / n)) \rightarrow \log (1+d) / d
$$

Wormald '95

$$
\iota\left(\mathcal{G}_{n, d}\right) \rightarrow \frac{1}{2}\left(1-(d-1)^{-2 /(d-2)}\right)
$$

Lauer-Wormald ' 07 (d-regular graphs with girth $\rightarrow \infty$)

Greedy independence ratio - results

Flory '39, Page '59 $\quad \iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right)$
McDiarmid '84

$$
\iota(G(n, d / n)) \rightarrow \log (1+d) / d
$$

Wormald '95

$$
\iota\left(\mathcal{G}_{n, d}\right) \rightarrow \frac{1}{2}\left(1-(d-1)^{-2 /(d-2)}\right)
$$

Lauer-Wormald ' 07 (d-regular graphs with girth $\rightarrow \infty$)
KMMS '20

$$
\iota\left(T_{n}\right) \rightarrow \frac{1}{2}
$$

Greedy independence ratio - results

Flory '39, Page '59 $\quad \iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right)$
McDiarmid '84
$\iota(G(n, d / n)) \rightarrow \log (1+d) / d$
Wormald '95
$\iota\left(\mathcal{G}_{n, d}\right) \rightarrow \frac{1}{2}\left(1-(d-1)^{-2 /(d-2)}\right)$
Lauer-Wormald ' 07 (d-regular graphs with girth $\rightarrow \infty$)
KMMS '20
$\iota\left(T_{n}\right) \rightarrow \frac{1}{2}$
(same for functional digraphs)

Paths are the worst trees

Paths are the worst trees

- $\iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right) \approx 0.43233 \ldots$

Paths are the worst trees

- $\iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right) \approx 0.43233 \ldots$
- $\iota\left(S_{n}\right) \rightarrow 1$

Paths are the worst trees

- $\iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right) \approx 0.43233 \ldots$
- $\iota\left(S_{n}\right) \rightarrow 1$

Paths are the worst trees

- $\iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right) \approx 0.43233 \ldots$
- $\iota\left(S_{n}\right) \rightarrow 1$

Paths are the worst trees

- $\iota\left(P_{n}\right) \rightarrow \frac{1}{2}\left(1-e^{-2}\right) \approx 0.43233 \ldots$
- $\iota\left(S_{n}\right) \rightarrow 1$

Theorem (Krivelevich, Mészáros, M., Shikhelman '20) If T is a tree on n vertices, then $\mathbb{E}\left[\iota\left(P_{n}\right)\right] \leq \mathbb{E}[\iota(T)]$.

What's next?

- Graph sequences that are not locally tree-like
- Better/other local rules
- Other colours

Thank You!

