
Greedy maximal independent sets via local limits

Peleg Michaeli

Tel Aviv University

Probabilistic Combinatorics Online, 25 September 2020

Joint work with Michael Krivelevich, Tamás Mészáros and Clara Shikhelman
31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods

for the Analysis of Algorithms (AofA 2020)

Parking cars on a cycle

Parking cars on a cycle

Parking cars on a cycle

Parking cars on a cycle

Parking cars on a cycle

Parking cars on a cycle

Parking cars on a cycle

Parking cars on a cycle

Parking cars on a cycle

Parking cars on a cycle

Independent sets

An independent set is a set of vertices in a graph, no two of which are
adjacent.

Finding maximum independent sets is very hard
Finding maximal independent sets is very easy

Independent sets

An independent set is a set of vertices in a graph, no two of which are
adjacent.

Finding maximum independent sets is very hard

Finding maximal independent sets is very easy

Independent sets

An independent set is a set of vertices in a graph, no two of which are
adjacent.

Finding maximum independent sets is very hard
Finding maximal independent sets is very easy

Greedy MIS

Greedy MIS

1 2 3

4 5 6

7 8 9

Greedy MIS

1 2 3

4 5 6

7 8 9

Greedy MIS

1 2 3

4 5 6

7 8 9

Greedy MIS

1 2 3

4 5 6

7 8 9

Greedy MIS

1 2 3

4 5 6

7 8 9

Greedy MIS

1 2 3

4 5 6

7 8 9

Greedy MIS

1 2 3

4 5 6

7 8 9

Greedy MIS

1 2 3

4 5 6

7 8 9

Greedy MIS

1 2 3

4 5 6

7 8 9

Greedy MIS

1 2 3

4 5 6

7 8 9

Greedy MIS — performance

Greedy MIS — performance

1
2

34

5

6

7

8

Greedy MIS — performance

1
2

34

5

6

7

8

Greedy MIS — performance

1
2

34

5

6

7

8

Greedy MIS — performance

1
2

34

5

6

7

8

Greedy MIS — performance

1
2

34

5

6

7

8

2
1

34

5

6

7

8

Greedy MIS — performance

1
2

34

5

6

7

8

2
1

34

5

6

7

8

Greedy MIS — performance

1
2

34

5

6

7

8

2
1

34

5

6

7

8

Greedy MIS — performance

1
2

34

5

6

7

8

2
1

34

5

6

7

8

Random greedy MIS — sequential

Random greedy MIS — sequential

1 2

3

4

5

67

8

9

Random greedy MIS — sequential

1 2

3

4

5

67

8

9

Random greedy MIS — sequential

1 2

3

4

5

67

8

9

Random greedy MIS — sequential

1 2

3

4

5

67

8

9

Random greedy MIS — sequential

1 2

3

4

5

67

8

9

Random greedy MIS — sequential

1 2

3

4

5

67

8

9

Random greedy MIS — sequential

1 2

3

4

5

67

8

9

Random greedy MIS — sequential

1 2

3

4

5

67

8

9

Random greedy MIS — sequential

1 2

3

4

5

67

8

9

Random greedy MIS — sequential

1 2

3

4

5

67

8

9

Random greedy MIS — sequential

1 2

3

4

5

67

8

9

Greedy independence ratio — previous work

Let I(G) be the yielded independent set, and let ι(G) = |I(G)|/|V (G)|.

random variable

Flory ’39, Page ’59 ι(Pn) → 1
2(1− e−2)

McDiarmid ’84 ι(G(n, d/n)) → log(1 + d)/d

Wormald ’95 ι(Gn,d) → 1
2

(
1− (d− 1)−2/(d−2)

)
Lauer–Wormald ’07 (same for d-regular graphs with girth → ∞)

BJL ’17, BJM ’17 random graphs with given degree sequence

Greedy independence ratio — previous work

Let I(G) be the yielded independent set, and let ι(G) = |I(G)|/|V (G)|.

random variable

Flory ’39, Page ’59 ι(Pn) → 1
2(1− e−2)

McDiarmid ’84 ι(G(n, d/n)) → log(1 + d)/d

Wormald ’95 ι(Gn,d) → 1
2

(
1− (d− 1)−2/(d−2)

)
Lauer–Wormald ’07 (same for d-regular graphs with girth → ∞)

BJL ’17, BJM ’17 random graphs with given degree sequence

Greedy independence ratio — previous work

Let I(G) be the yielded independent set, and let ι(G) = |I(G)|/|V (G)|.

random variable

Flory ’39, Page ’59 ι(Pn) → 1
2(1− e−2)

McDiarmid ’84 ι(G(n, d/n)) → log(1 + d)/d

Wormald ’95 ι(Gn,d) → 1
2

(
1− (d− 1)−2/(d−2)

)
Lauer–Wormald ’07 (same for d-regular graphs with girth → ∞)

BJL ’17, BJM ’17 random graphs with given degree sequence

Greedy independence ratio — previous work

Let I(G) be the yielded independent set, and let ι(G) = |I(G)|/|V (G)|.

random variable

Flory ’39, Page ’59 ι(Pn) → 1
2(1− e−2)

McDiarmid ’84 ι(G(n, d/n)) → log(1 + d)/d

Wormald ’95 ι(Gn,d) → 1
2

(
1− (d− 1)−2/(d−2)

)
Lauer–Wormald ’07 (same for d-regular graphs with girth → ∞)

BJL ’17, BJM ’17 random graphs with given degree sequence

Greedy independence ratio — previous work

Let I(G) be the yielded independent set, and let ι(G) = |I(G)|/|V (G)|.

random variable

Flory ’39, Page ’59 ι(Pn) → 1
2(1− e−2)

McDiarmid ’84 ι(G(n, d/n)) → log(1 + d)/d

Wormald ’95 ι(Gn,d) → 1
2

(
1− (d− 1)−2/(d−2)

)

Lauer–Wormald ’07 (same for d-regular graphs with girth → ∞)

BJL ’17, BJM ’17 random graphs with given degree sequence

Greedy independence ratio — previous work

Let I(G) be the yielded independent set, and let ι(G) = |I(G)|/|V (G)|.

random variable

Flory ’39, Page ’59 ι(Pn) → 1
2(1− e−2)

McDiarmid ’84 ι(G(n, d/n)) → log(1 + d)/d

Wormald ’95 ι(Gn,d) → 1
2

(
1− (d− 1)−2/(d−2)

)
Lauer–Wormald ’07 (same for d-regular graphs with girth → ∞)

BJL ’17, BJM ’17 random graphs with given degree sequence

Greedy independence ratio — previous work

Let I(G) be the yielded independent set, and let ι(G) = |I(G)|/|V (G)|.

random variable

Flory ’39, Page ’59 ι(Pn) → 1
2(1− e−2)

McDiarmid ’84 ι(G(n, d/n)) → log(1 + d)/d

Wormald ’95 ι(Gn,d) → 1
2

(
1− (d− 1)−2/(d−2)

)
Lauer–Wormald ’07 (same for d-regular graphs with girth → ∞)

BJL ’17, BJM ’17 random graphs with given degree sequence

(Random) greedy MIS — parallel

(Random) greedy MIS — parallel

1 2

3

4

5

67

8

9

(Random) greedy MIS — parallel

1 2

3

4

5

67

8

9

(Random) greedy MIS — parallel

1 2

3

4

5

67

8

9

(Random) greedy MIS — parallel

1 2

3

4

5

67

8

9

Random labelling

Random labelling

0.05 0.06

0.09

0.21

0.24

0.350.37

0.41

0.99

Random labelling

0.05 0.06

0.09

0.21

0.24

0.350.37

0.41

0.99

Random labelling

0.05 0.06

0.09

0.21

0.24

0.350.37

0.41

0.99

Random labelling

0.05 0.06

0.09

0.21

0.24

0.350.37

0.41

0.99

Random labelling

0.05 0.06

0.09

0.21

0.24

0.350.37

0.41

0.99

0.03 0.04 0.04 0.05 0.05 0.06 0.08 0.10 0.15 0.25 0.50 0.75 0.85 0.90 0.92 0.94 0.95 0.95 0.96 0.96 0.97

Random labelling

0.05 0.06

0.09

0.21

0.24

0.350.37

0.41

0.99

0.50 0.34 0.22 0.95 0.76 0.77 0.68 0.35 0.42 0.54 0.83 0.57 0.56 0.90 0.45 0.63 0.87 0.98 0.96 0.24 0.99

é

Random labelling

0.05 0.06

0.09

0.21

0.24

0.350.37

0.41

0.99

0.50 0.34 0.22 0.95 0.76 0.77 0.68 0.35 0.42 0.54 0.83 0.57 0.56 0.90 0.45 0.63 0.87 0.98 0.96 0.24 0.99

é

Random labelling

0.05 0.06

0.09

0.21

0.24

0.350.37

0.41

0.99

0.50 0.34 0.22 0.95 0.76 0.77 0.68 0.35 0.42 0.54 0.83 0.57 0.56 0.90 0.45 0.63 0.87 0.98 0.96 0.24 0.99

é

Random labelling

0.05 0.06

0.09

0.21

0.24

0.350.37

0.41

0.99

0.50 0.34 0.22 0.95 0.76 0.77 0.68 0.35 0.42 0.54 0.83 0.57 0.56 0.90 0.45 0.63 0.87 0.98 0.96 0.24 0.99

é

Random labelling

0.05 0.06

0.09

0.21

0.24

0.350.37

0.41

0.99

0.50 0.34 0.22 0.95 0.76 0.77 0.68 0.35 0.42 0.54 0.83 0.57 0.56 0.90 0.45 0.63 0.87 0.98 0.96 0.24 0.99

é

Random labelling

0.05 0.06

0.09

0.21

0.24

0.350.37

0.41

0.99

0.50 0.34 0.22 0.95 0.76 0.77 0.68 0.35 0.42 0.54 0.83 0.57 0.56 0.90 0.45 0.63 0.87 0.98 0.96 0.24 0.99

é

General framework

Let Gn be a graph sequence satisfying |Gn| → ∞.

We wish to calculate the asymptotics of ι(Gn).

We approximate E[ι(Gn)] = P(ρn ∈ I(Gn)) for ρn chosen uniformly.
We hope that this is determined by a small neighbourhood of ρn.
Decay of correlation =⇒ ι(Gn) ∼ E[ι(Gn)] a.a.s.
This local view of ρn is captured by the local limit of Gn.
Develop a machinery to calculate the probability that the root of the
local limit is red.

General framework

Let Gn be a graph sequence satisfying |Gn| → ∞.

We wish to calculate the asymptotics of ι(Gn).
We approximate E[ι(Gn)] = P(ρn ∈ I(Gn)) for ρn chosen uniformly.

We hope that this is determined by a small neighbourhood of ρn.
Decay of correlation =⇒ ι(Gn) ∼ E[ι(Gn)] a.a.s.
This local view of ρn is captured by the local limit of Gn.
Develop a machinery to calculate the probability that the root of the
local limit is red.

General framework

Let Gn be a graph sequence satisfying |Gn| → ∞.

We wish to calculate the asymptotics of ι(Gn).
We approximate E[ι(Gn)] = P(ρn ∈ I(Gn)) for ρn chosen uniformly.
We hope that this is determined by a small neighbourhood of ρn.

Decay of correlation =⇒ ι(Gn) ∼ E[ι(Gn)] a.a.s.
This local view of ρn is captured by the local limit of Gn.
Develop a machinery to calculate the probability that the root of the
local limit is red.

General framework

Let Gn be a graph sequence satisfying |Gn| → ∞.

We wish to calculate the asymptotics of ι(Gn).
We approximate E[ι(Gn)] = P(ρn ∈ I(Gn)) for ρn chosen uniformly.
We hope that this is determined by a small neighbourhood of ρn.
Decay of correlation =⇒ ι(Gn) ∼ E[ι(Gn)] a.a.s.

This local view of ρn is captured by the local limit of Gn.
Develop a machinery to calculate the probability that the root of the
local limit is red.

General framework

Let Gn be a graph sequence satisfying |Gn| → ∞.

We wish to calculate the asymptotics of ι(Gn).
We approximate E[ι(Gn)] = P(ρn ∈ I(Gn)) for ρn chosen uniformly.
We hope that this is determined by a small neighbourhood of ρn.
Decay of correlation =⇒ ι(Gn) ∼ E[ι(Gn)] a.a.s.
This local view of ρn is captured by the local limit of Gn.

Develop a machinery to calculate the probability that the root of the
local limit is red.

General framework

Let Gn be a graph sequence satisfying |Gn| → ∞.

We wish to calculate the asymptotics of ι(Gn).
We approximate E[ι(Gn)] = P(ρn ∈ I(Gn)) for ρn chosen uniformly.
We hope that this is determined by a small neighbourhood of ρn.
Decay of correlation =⇒ ι(Gn) ∼ E[ι(Gn)] a.a.s.
This local view of ρn is captured by the local limit of Gn.
Develop a machinery to calculate the probability that the root of the
local limit is red.

Local limits (a.k.a. Benjamini–Schramm Limits)

We say that a (random) graph sequence Gn converges locally to a
(random) rooted graph (U, ρ) if for every r ≥ 0 the ball BGn(ρn, r)
converges in distribution to BU (ρ, r), where ρn is a uniform vertex of Gn.

Local limits (a.k.a. Benjamini–Schramm Limits)

We say that a (random) graph sequence Gn converges locally to a
(random) rooted graph (U, ρ) if for every r ≥ 0 the ball BGn(ρn, r)
converges in distribution to BU (ρ, r), where ρn is a uniform vertex of Gn.

· · ·

x ê

ê

x ê

ê

Local limits (a.k.a. Benjamini–Schramm Limits)

We say that a (random) graph sequence Gn converges locally to a
(random) rooted graph (U, ρ) if for every r ≥ 0 the ball BGn(ρn, r)
converges in distribution to BU (ρ, r), where ρn is a uniform vertex of Gn.

· · ·

x ê

ê

x ê

ê

Local limits (a.k.a. Benjamini–Schramm Limits)

We say that a (random) graph sequence Gn converges locally to a
(random) rooted graph (U, ρ) if for every r ≥ 0 the ball BGn(ρn, r)
converges in distribution to BU (ρ, r), where ρn is a uniform vertex of Gn.

· · ·

x ê

ê

x ê

ê

Local limits (a.k.a. Benjamini–Schramm Limits)

We say that a (random) graph sequence Gn converges locally to a
(random) rooted graph (U, ρ) if for every r ≥ 0 the ball BGn(ρn, r)
converges in distribution to BU (ρ, r), where ρn is a uniform vertex of Gn.

· · ·

x ê

ê

x ê

ê

Local limits (a.k.a. Benjamini–Schramm Limits)

We say that a (random) graph sequence Gn converges locally to a
(random) rooted graph (U, ρ) if for every r ≥ 0 the ball BGn(ρn, r)
converges in distribution to BU (ρ, r), where ρn is a uniform vertex of Gn.

· · ·

x ê

ê

x ê

ê

Local limits (a.k.a. Benjamini–Schramm Limits)

We say that a (random) graph sequence Gn converges locally to a
(random) rooted graph (U, ρ) if for every r ≥ 0 the ball BGn(ρn, r)
converges in distribution to BU (ρ, r), where ρn is a uniform vertex of Gn.

· · ·

x ê

ê

x ê

ê

Local limits (a.k.a. Benjamini–Schramm Limits)

We say that a (random) graph sequence Gn converges locally to a
(random) rooted graph (U, ρ) if for every r ≥ 0 the ball BGn(ρn, r)
converges in distribution to BU (ρ, r), where ρn is a uniform vertex of Gn.

· · ·

x ê

ê

x ê

ê

Local limits (a.k.a. Benjamini–Schramm Limits)

We say that a (random) graph sequence Gn converges locally to a
(random) rooted graph (U, ρ) if for every r ≥ 0 the ball BGn(ρn, r)
converges in distribution to BU (ρ, r), where ρn is a uniform vertex of Gn.

Examples
Pn, Cn

loc−→ Z

[n]d
loc−→ Zd

G(n, d/n)
loc−→ Td, a Galton–Watson Pois(d) tree

Gn,d
loc−→ the d-regular tree

Uniform random tree Tn
loc−→ T̂1, a size-biased GW Pois(1) tree

Finite d-ary balanced tree loc−→ the canopy tree

Convergence of the greedy independence ratio

Say that Gn has subfactorial path growth if the expected number of paths
from a typical vertex is subfactorial in their length.

(bounded degree ⊊ subfactorial path growth)

Theorem (Krivelevich, Mészáros, M., Shikhelman ’20)
Suppose Gn has subfactorial path growth.
If Gn

loc−→ (U, ρ) then ι(Gn) → ι(U, ρ) a.a.s.

P(ρ is red)

Convergence of the greedy independence ratio

Say that Gn has subfactorial path growth if the expected number of paths
from a typical vertex is subfactorial in their length.

(bounded degree ⊊ subfactorial path growth)

Theorem (Krivelevich, Mészáros, M., Shikhelman ’20)
Suppose Gn has subfactorial path growth.
If Gn

loc−→ (U, ρ) then ι(Gn) → ι(U, ρ) a.a.s.

P(ρ is red)

Convergence of the greedy independence ratio

Say that Gn has subfactorial path growth if the expected number of paths
from a typical vertex is subfactorial in their length.

(bounded degree ⊊ subfactorial path growth)

Theorem (Krivelevich, Mészáros, M., Shikhelman ’20)
Suppose Gn has subfactorial path growth.
If Gn

loc−→ (U, ρ) then ι(Gn) → ι(U, ρ) a.a.s.

P(ρ is red)

Convergence of the greedy independence ratio

Say that Gn has subfactorial path growth if the expected number of paths
from a typical vertex is subfactorial in their length.

(bounded degree ⊊ subfactorial path growth)

Theorem (Krivelevich, Mészáros, M., Shikhelman ’20)
Suppose Gn has subfactorial path growth.
If Gn

loc−→ (U, ρ) then ι(Gn) → ι(U, ρ) a.a.s.

P(ρ is red)

Exploration algorithms / decay of correlation

Exploration algorithms / decay of correlation

Exploration algorithms / decay of correlation

Exploration algorithms / decay of correlation

Exploration algorithms / decay of correlation

Exploration algorithms / decay of correlation

Exploration algorithms / decay of correlation

Exploration algorithms / decay of correlation

Exploration algorithms / decay of correlation

Exploration algorithms / decay of correlation

Exploration algorithms / decay of correlation

Exploration algorithms / decay of correlation

Exploration algorithms / decay of correlation

Exploration algorithms / decay of correlation

Locally tree-like

We need to calculate ι(U, ρ),

but even ι(Z2) is still unknown...
Let us therefore restrict ourselves to locally tree-like graph sequences, i.e.,
graph sequences for which (U, ρ) is almost surely a tree.

ρ

u1 u2 · · · ud

Assuming the children of ρ are roots to independent subtrees, and
conditioning on the label of ρ, children of the past are roots to
independent processes.

Locally tree-like

We need to calculate ι(U, ρ), but even ι(Z2) is still unknown...

Let us therefore restrict ourselves to locally tree-like graph sequences, i.e.,
graph sequences for which (U, ρ) is almost surely a tree.

ρ

u1 u2 · · · ud

Assuming the children of ρ are roots to independent subtrees, and
conditioning on the label of ρ, children of the past are roots to
independent processes.

Locally tree-like

We need to calculate ι(U, ρ), but even ι(Z2) is still unknown...
Let us therefore restrict ourselves to locally tree-like graph sequences, i.e.,
graph sequences for which (U, ρ) is almost surely a tree.

ρ

u1 u2 · · · ud

Assuming the children of ρ are roots to independent subtrees, and
conditioning on the label of ρ, children of the past are roots to
independent processes.

Locally tree-like

We need to calculate ι(U, ρ), but even ι(Z2) is still unknown...
Let us therefore restrict ourselves to locally tree-like graph sequences, i.e.,
graph sequences for which (U, ρ) is almost surely a tree.

ρ

u1 u2 · · · ud

Assuming the children of ρ are roots to independent subtrees, and
conditioning on the label of ρ, children of the past are roots to
independent processes.

Locally tree-like

We need to calculate ι(U, ρ), but even ι(Z2) is still unknown...
Let us therefore restrict ourselves to locally tree-like graph sequences, i.e.,
graph sequences for which (U, ρ) is almost surely a tree.

ρ

u1 u2 · · · ud

Assuming the children of ρ are roots to independent subtrees, and
conditioning on the label of ρ, children of the past are roots to
independent processes.

Systems of ordinary differential equations

Let (U, ρ) be a single-type branching process.

y(x) = P(ρ ∈ I(U [Pρ]) ∧ σρ < x)

= x · P(ρ ∈ I(U [Pρ]) | σρ < x)

=

∫ x

0
P(ρ ∈ I(U [Pρ]) | σρ = z)dz

y′(x) = P(ρ ∈ I(U [Pρ]) | σρ = x)

Systems of ordinary differential equations

Let (U, ρ) be a single-type branching process.

y(x) = P(ρ ∈ I(U [Pρ]) ∧ σρ < x)

= x · P(ρ ∈ I(U [Pρ]) | σρ < x)

=

∫ x

0
P(ρ ∈ I(U [Pρ]) | σρ = z)dz

y′(x) = P(ρ ∈ I(U [Pρ]) | σρ = x)

Systems of ordinary differential equations

Let (U, ρ) be a single-type branching process.

y(x) = P(ρ ∈ I(U [Pρ]) ∧ σρ < x)

= x · P(ρ ∈ I(U [Pρ]) | σρ < x)

=

∫ x

0
P(ρ ∈ I(U [Pρ]) | σρ = z)dz

y′(x) = P(ρ ∈ I(U [Pρ]) | σρ = x)

Systems of ordinary differential equations

Let (U, ρ) be a single-type branching process.

y(x) = P(ρ ∈ I(U [Pρ]) ∧ σρ < x)

= x · P(ρ ∈ I(U [Pρ]) | σρ < x)

=

∫ x

0
P(ρ ∈ I(U [Pρ]) | σρ = z)dz

y′(x) = P(ρ ∈ I(U [Pρ]) | σρ = x)

Systems of ordinary differential equations

Let (U, ρ) be a single-type branching process.

y(x) = P(ρ ∈ I(U [Pρ]) ∧ σρ < x)

= x · P(ρ ∈ I(U [Pρ]) | σρ < x)

=

∫ x

0
P(ρ ∈ I(U [Pρ]) | σρ = z)dz

y′(x) = P(ρ ∈ I(U [Pρ]) | σρ = x)

Thus, if y is a unique solution of

y′(x) =
∑
ℓ∈N

P(ξ[< x] = ℓ)

(
1− y(x)

x

)ℓ

, y(0) = 0,

then, ι(U, ρ) = y(1).

Systems of ordinary differential equations

Let (U, ρ) be a single-type branching process.

y(x) = P(ρ ∈ I(U [Pρ]) ∧ σρ < x)

= x · P(ρ ∈ I(U [Pρ]) | σρ < x)

=

∫ x

0
P(ρ ∈ I(U [Pρ]) | σρ = z)dz

y′(x) = P(ρ ∈ I(U [Pρ]) | σρ = x)

Thus, if y is a unique solution of

y′(x) =
∑
ℓ∈N

P(ξ[< x] = ℓ)

(
1− y(x)

x

)ℓ

, y(0) = 0,

then, ι(U, ρ) = y(1).

Systems of ordinary differential equations

Let (U, ρ) be a (simple) multitype branching process.

yk(x) = P(ρ ∈ I(U [Pρ]) ∧ σρ < x | τ = k)

= x · P(ρ ∈ I(U [Pρ]) | σρ < x, τ = k)

=

∫ x

0
P(ρ ∈ I(U [Pρ]) | σρ = z, τ = k)dz

y′k(x) = P(ρ ∈ I(U [Pρ]) | σρ = x, τ = k)

Thus, if y is a unique solution of

y′k(x) =
∑
ℓ∈NT

∏
j∈T

P
(
ξk→j [< x] = ℓj

)(
1− yj(x)

x

)ℓj

, yk(0) = 0,

then, ι(U, ρ) = E[yk(1)].

Application: paths and cycles

Pn and Cn converge locally to Z, which can be thought of as a 2-type
branching process.

0

-1 1

-2 2

-3 3

y′b(x) = 1− yb(x) =⇒ yb(x) = 1− e−x,

y′r(x) = (1− yb(x))
2 = e−2x =⇒ yr(x) =

1

2

(
1− e−2x

)
.

Thus

ι(Pn), ι(Cn) → ι(Z) = y2(1) =
1

2

(
1− e−2

)
.

α(Pn)/n, α(Cn)/n → 1/2.

Application: paths and cycles

Pn and Cn converge locally to Z, which can be thought of as a 2-type
branching process.

0

-1 1

-2 2

-3 3

y′b(x) = 1− yb(x) =⇒ yb(x) = 1− e−x,

y′r(x) = (1− yb(x))
2 = e−2x =⇒ yr(x) =

1

2

(
1− e−2x

)
.

Thus

ι(Pn), ι(Cn) → ι(Z) = y2(1) =
1

2

(
1− e−2

)
.

α(Pn)/n, α(Cn)/n → 1/2.

Application: paths and cycles

Pn and Cn converge locally to Z, which can be thought of as a 2-type
branching process.

0

-1 1

-2 2

-3 3

y′b(x) = 1− yb(x) =⇒ yb(x) = 1− e−x,

y′r(x) = (1− yb(x))
2 = e−2x =⇒ yr(x) =

1

2

(
1− e−2x

)
.

Thus

ι(Pn), ι(Cn) → ι(Z) = y2(1) =
1

2

(
1− e−2

)
.

α(Pn)/n, α(Cn)/n → 1/2.

Application: paths and cycles

Pn and Cn converge locally to Z, which can be thought of as a 2-type
branching process.

0

-1 1

-2 2

-3 3

y′b(x) = 1− yb(x) =⇒ yb(x) = 1− e−x,

y′r(x) = (1− yb(x))
2 = e−2x =⇒ yr(x) =

1

2

(
1− e−2x

)
.

Thus

ι(Pn), ι(Cn) → ι(Z) = y2(1) =
1

2

(
1− e−2

)
.

α(Pn)/n, α(Cn)/n → 1/2.

Application: paths and cycles

Pn and Cn converge locally to Z, which can be thought of as a 2-type
branching process.

0

-1 1

-2 2

-3 3

y′b(x) = 1− yb(x) =⇒ yb(x) = 1− e−x,

y′r(x) = (1− yb(x))
2 = e−2x =⇒ yr(x) =

1

2

(
1− e−2x

)
.

Thus

ι(Pn), ι(Cn) → ι(Z) = y2(1) =
1

2

(
1− e−2

)
.

α(Pn)/n, α(Cn)/n → 1/2.

Application: binomial random graphs

Easy fact: G(n, d/n) converges locally to the Pois(d) branching process.

y′(x) =

∞∑
ℓ=0

(dx)ℓ

edxℓ!

(
1− y(x)

x

)ℓ

= e−dy(x).

hence y(x) = log(1 + dx)/d.

Thus

ι(G(n, d/n)) → ι(Td) = y(1) =
log(1 + d)

d
.

α(G(n, d/n))/n → 2 log d/d · (1 + od(1)).

Application: binomial random graphs

Easy fact: G(n, d/n) converges locally to the Pois(d) branching process.

y′(x) =

∞∑
ℓ=0

(dx)ℓ

edxℓ!

(
1− y(x)

x

)ℓ

= e−dy(x).

hence y(x) = log(1 + dx)/d. Thus

ι(G(n, d/n)) → ι(Td) = y(1) =
log(1 + d)

d
.

α(G(n, d/n))/n → 2 log d/d · (1 + od(1)).

Application: binomial random graphs

Easy fact: G(n, d/n) converges locally to the Pois(d) branching process.

y′(x) =

∞∑
ℓ=0

(dx)ℓ

edxℓ!

(
1− y(x)

x

)ℓ

= e−dy(x).

hence y(x) = log(1 + dx)/d. Thus

ι(G(n, d/n)) → ι(Td) = y(1) =
log(1 + d)

d
.

α(G(n, d/n))/n → 2 log d/d · (1 + od(1)).

Size-biased Galton–Watson branching processes

Grimmett ’80: the sequence of uniform random trees converges locally to
the size-biased Galton–Watson Pois(1) tree.

Size-biased Galton–Watson branching processes

Grimmett ’80: the sequence of uniform random trees converges locally to
the size-biased Galton–Watson Pois(1) tree.

Size-biased Galton–Watson branching processes

Grimmett ’80: the sequence of uniform random trees converges locally to
the size-biased Galton–Watson Pois(1) tree.

Size-biased Galton–Watson branching processes

Grimmett ’80: the sequence of uniform random trees converges locally to
the size-biased Galton–Watson Pois(1) tree.

Size-biased Galton–Watson branching processes

Grimmett ’80: the sequence of uniform random trees converges locally to
the size-biased Galton–Watson Pois(1) tree.

Size-biased Galton–Watson branching processes

Grimmett ’80: the sequence of uniform random trees converges locally to
the size-biased Galton–Watson Pois(1) tree.

Size-biased Galton–Watson branching processes

Grimmett ’80: the sequence of uniform random trees converges locally to
the size-biased Galton–Watson Pois(1) tree.

Size-biased Galton–Watson branching processes

Grimmett ’80: the sequence of uniform random trees converges locally to
the size-biased Galton–Watson Pois(1) tree.

Size-biased Galton–Watson branching processes

Grimmett ’80: the sequence of uniform random trees converges locally to
the size-biased Galton–Watson Pois(1) tree.

Size-biased Galton–Watson branching processes

Grimmett ’80: the sequence of uniform random trees converges locally to
the size-biased Galton–Watson Pois(1) tree.

Application: uniform random trees

Let s be the type of a vertex on the spine, and t be the type of a vertex on
one of the hanging trees. We have already seen

yt(x) = log(1 + x),

and
y′s(x) = (1− ys(x))y

′
t(x) =

1− ys(x)

1 + x
,

hence ys(x) = 1− (1 + x)−1, and we get

ι(Tn) → ι(T̂1) = ys(1) =
1

2
.

α(Tn)/n → W0(1) ≈ 0.56714...

Application: uniform random trees

Let s be the type of a vertex on the spine, and t be the type of a vertex on
one of the hanging trees. We have already seen

yt(x) = log(1 + x),

and
y′s(x) = (1− ys(x))y

′
t(x) =

1− ys(x)

1 + x
,

hence ys(x) = 1− (1 + x)−1, and we get

ι(Tn) → ι(T̂1) = ys(1) =
1

2
.

α(Tn)/n → W0(1) ≈ 0.56714...

Application: uniform random trees

Let s be the type of a vertex on the spine, and t be the type of a vertex on
one of the hanging trees. We have already seen

yt(x) = log(1 + x),

and
y′s(x) = (1− ys(x))y

′
t(x) =

1− ys(x)

1 + x
,

hence ys(x) = 1− (1 + x)−1, and we get

ι(Tn) → ι(T̂1) = ys(1) =
1

2
.

α(Tn)/n → W0(1) ≈ 0.56714...

Simulations don’t lie

red: 125 (50%), green: 92 (≈ 37%), blue: 32 (≈ 13%), black: 1

Simulations don’t lie

red: 125 (50%), green: 92 (≈ 37%), blue: 32 (≈ 13%), black: 1

Simulations don’t lie (but I do)

red: 125 (50%), green: 92 (≈ 37%), blue: 32 (≈ 13%), black: 1

Greedy independence ratio — results

Flory ’39, Page ’59 ι(Pn) → 1
2(1− e−2)

✓

McDiarmid ’84 ι(G(n, d/n)) → log(1 + d)/d

✓

Wormald ’95 ι(Gn,d) → 1
2

(
1− (d− 1)−2/(d−2)

)

✓

Lauer–Wormald ’07 (d-regular graphs with girth → ∞)

✓
KMMS ’20 ι(Tn) → 1

2 X
(same for functional digraphs) X

Greedy independence ratio — results

Flory ’39, Page ’59 ι(Pn) → 1
2(1− e−2) ✓

McDiarmid ’84 ι(G(n, d/n)) → log(1 + d)/d

✓

Wormald ’95 ι(Gn,d) → 1
2

(
1− (d− 1)−2/(d−2)

)

✓

Lauer–Wormald ’07 (d-regular graphs with girth → ∞)

✓
KMMS ’20 ι(Tn) → 1

2 X
(same for functional digraphs) X

Greedy independence ratio — results

Flory ’39, Page ’59 ι(Pn) → 1
2(1− e−2) ✓

McDiarmid ’84 ι(G(n, d/n)) → log(1 + d)/d ✓
Wormald ’95 ι(Gn,d) → 1

2

(
1− (d− 1)−2/(d−2)

)

✓

Lauer–Wormald ’07 (d-regular graphs with girth → ∞)

✓
KMMS ’20 ι(Tn) → 1

2 X
(same for functional digraphs) X

Greedy independence ratio — results

Flory ’39, Page ’59 ι(Pn) → 1
2(1− e−2) ✓

McDiarmid ’84 ι(G(n, d/n)) → log(1 + d)/d ✓
Wormald ’95 ι(Gn,d) → 1

2

(
1− (d− 1)−2/(d−2)

) ✓
Lauer–Wormald ’07 (d-regular graphs with girth → ∞)

✓
KMMS ’20 ι(Tn) → 1

2 X
(same for functional digraphs) X

Greedy independence ratio — results

Flory ’39, Page ’59 ι(Pn) → 1
2(1− e−2) ✓

McDiarmid ’84 ι(G(n, d/n)) → log(1 + d)/d ✓
Wormald ’95 ι(Gn,d) → 1

2

(
1− (d− 1)−2/(d−2)

) ✓
Lauer–Wormald ’07 (d-regular graphs with girth → ∞) ✓

KMMS ’20 ι(Tn) → 1
2 X

(same for functional digraphs) X

Greedy independence ratio — results

Flory ’39, Page ’59 ι(Pn) → 1
2(1− e−2) ✓

McDiarmid ’84 ι(G(n, d/n)) → log(1 + d)/d ✓
Wormald ’95 ι(Gn,d) → 1

2

(
1− (d− 1)−2/(d−2)

) ✓
Lauer–Wormald ’07 (d-regular graphs with girth → ∞) ✓
KMMS ’20 ι(Tn) → 1

2 X

(same for functional digraphs) X

Greedy independence ratio — results

Flory ’39, Page ’59 ι(Pn) → 1
2(1− e−2) ✓

McDiarmid ’84 ι(G(n, d/n)) → log(1 + d)/d ✓
Wormald ’95 ι(Gn,d) → 1

2

(
1− (d− 1)−2/(d−2)

) ✓
Lauer–Wormald ’07 (d-regular graphs with girth → ∞) ✓
KMMS ’20 ι(Tn) → 1

2 X
(same for functional digraphs) X

Paths are the worst trees

ι(Pn) → 1
2

(
1− e−2

)
≈ 0.43233...

ι(Sn) → 1

≤

Theorem (Krivelevich, Mészáros, M., Shikhelman ’20)
If T is a tree on n vertices, then E[ι(Pn)] ≤ E[ι(T)].

Paths are the worst trees

ι(Pn) → 1
2

(
1− e−2

)
≈ 0.43233...

ι(Sn) → 1

≤

Theorem (Krivelevich, Mészáros, M., Shikhelman ’20)
If T is a tree on n vertices, then E[ι(Pn)] ≤ E[ι(T)].

Paths are the worst trees

ι(Pn) → 1
2

(
1− e−2

)
≈ 0.43233...

ι(Sn) → 1

≤

Theorem (Krivelevich, Mészáros, M., Shikhelman ’20)
If T is a tree on n vertices, then E[ι(Pn)] ≤ E[ι(T)].

Paths are the worst trees

ι(Pn) → 1
2

(
1− e−2

)
≈ 0.43233...

ι(Sn) → 1

≤

Theorem (Krivelevich, Mészáros, M., Shikhelman ’20)
If T is a tree on n vertices, then E[ι(Pn)] ≤ E[ι(T)].

Paths are the worst trees

ι(Pn) → 1
2

(
1− e−2

)
≈ 0.43233...

ι(Sn) → 1

≤

Theorem (Krivelevich, Mészáros, M., Shikhelman ’20)
If T is a tree on n vertices, then E[ι(Pn)] ≤ E[ι(T)].

Paths are the worst trees

ι(Pn) → 1
2

(
1− e−2

)
≈ 0.43233...

ι(Sn) → 1

≤

Theorem (Krivelevich, Mészáros, M., Shikhelman ’20)
If T is a tree on n vertices, then E[ι(Pn)] ≤ E[ι(T)].

What’s next?

Graph sequences that are not locally tree-like
Better/other local rules
Other colours

???

Thank You!

