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Spin models on random graphs

Study statistical physics spin models on random graphs 

Great source of examples and counterexamples in combinatorics


For probabilists, random graphs have non-trivial geometry but may be 
tractable due to connection with infinite trees (Bethe lattice)


A source of hard computational problems and gadgets in hardness 
reductions



Potts model
Probability distribution on assignments of q colors to vertices of G:


            


where  is the number of monochromatic edges.  


Inverse temperature  is the ferromagnetic case,  is anti-
ferromagnetic.

μPotts
G (σ) =

eβ M(G,σ)

ZPotts
G (q, β)

ZPotts
G (q, β) = ∑

σ

eβM(G,σ)

M(G, σ)

β > 0 β < 0



Potts model

High temperature (  small)β Low temperature (  large)β



Techniques to study spin models
In combinatorics: first and second-moment methods, Azuma’s inequality, 
Chernoff bounds, Friedgut…


Give decent answers but fall short of pinning down thresholds (q-coloring threshold 
of G(n,p) still open!)


Non-rigorous cavity method from statistical physics predicts precise thresholds and 
structural changes (shattering, condensation,…). 


Main objects: Belief propagation, Bethe formula, replica symmetry breaking


Many aspects of the cavity method have now been made rigorous: BP-inspired 2nd 
moment; interpolation method; Coja-Oghlan, Ding-Sly-Sun, Mossel-Neeman-
Sly..



Our technique
Abstract polymer models and the cluster expansion


Classical technique from statistical physics: used e.g. by Laanait-Messager-Miracle-
Sole-Ruiz-Shlosman to understand the large-q 1st order phase transition for Potts on 


Used recently in algorithms: joint w/  Helmuth-P.-Regts, Jenssen-Keevash-P., Borgs-
Chayes-Helmuth-P.-Tetali 

Used recently in combinatorics: Jenssen-P., Balogh-Garcia-Li, Davies-Jenssen-P., 
Jenssen-Keevash (talks on the “Big Seminar” youtube channel)


Write a partition function in terms of defects from a ground state (polymers)


Express the log partition function as an infinite series (sum over clusters)

ℤd



Potts model on random graphs

Ferromagnetic Potts: always replica symmetric, q ground states


Antiferromagnetic Potts: replica symmetry breaking, information-
computation gap



Potts on Random Graphs
Ferromagnetic Potts model on random d-regular graphs (Galanis-Stefankovic-Vigoda-
Yang; also Dembo-Montanari-Sly-Sun): 


Let 


For , there is a disordered phase (marginals close to uniform whp)


For , there are q ordered phases (marginals favor one dominant color)


For , the q+1 phases each have at least  probability (weak phase coexistence)


Good understanding of the free energy: 

βc(q, d) = log
q − 1

(q − 1)1−2/d − 1

β < βc

β > βc

β = βc 1/nc

lim
n→∞

1
n

𝔼 log Zn



Potts on Random Graphs
What precisely happens at ? (phase coexistence)


What is the distribution of ? (finite-size scaling)


How do correlations behave? (exponential decay of correlations?)


What is the local spin distribution? (local weak convergence)


We can answer all of these questions in detail when  is large. 
More generally, we do so for the random cluster model. 

β = βc

log Zn

q = q(d)



Random cluster model
Probability distribution on subsets of edges of G.


     


where  is the number of connected components of .


Two possible ground states:  disordered ,  ordered .


 real

μG(A) =
qc(A)(eβ − 1)|A|

ZG(q, β)
ZG(q, β) = ∑

A⊆E

qc(A)(eβ − 1)|A|

c(A) (V, A)

A = ∅ A = E

q > 0



Edwards-Sokal coupling
ZPotts

G (q, β) = ZG(q, β)

1. Pick a set of edges 
according to the random 
cluster measure


2. Determine the connected 
components



Edwards-Sokal coupling
ZPotts

G (q, β) = ZG(q, β)

1. Pick a set of edges 
according to the random 
cluster measure


2. Determine the connected 
components


3. Assign one of the q colors 
uniformly and independently 
to each connected 
component



Main results
Thm. For  and  large enough, there exists  so that:


1. For  the free energy is analytic and  exhibits exponential 
decay of correlations whp.


2.  converges locally to  and  for  and  
respectively


3. The relative weights of the ordered and disordered states at  
converge to given random variables (a function of small cycle counts).  
converges locally to a mixture of  and 

d ≥ 5 q = q(d) βc(q, d)

β ≠ βc μn

μn μfree μwire β < βc β > βc

β = βc
μn

μfree μwire



Main results

Thm. For ,  large enough, and all  there is an FPTAS and 
efficient sampling algorithm for the random cluster model on d-regular 
random graphs.


Algorithms work subject to expansion conditions that hold whp and can 
be checked efficiently.

d ≥ 5 q = q(d) β



Step 1: almost all or nothing

Use expansion properties to show that for q large, with probability 
 a sample from the RC model consists of at least .9 or at 

most .1 fraction of edges.  (Not hard)


Write 


Suffices to understand  and , and  and 

1 − exp(−Θ(n))

Z = Zdis + Zord + Zerr

Zdis Zord μdis μord



Polymer models and cluster expansion

Rewrite partition function as a sum over collections of disjoint geometric 
objects (polymers) of product of polymer weights


If weights decay fast enough as a function of size, then the cluster 
expansion, a power series for log Z, converges


Weights must factorize and decay




Step 2: disordered 
Express disordered configurations in terms of deviations from the empty 
configuration

Polymers are connected components of occupied edges 

w(γ) = q1−|γ|(eβ − 1)|E(γ)|



Step 2: ordered 
Express ordered configurations in terms of defects from the all-occupied 
configuration



Step 2: ordered 

Define boundary by starting with unoccupied edges; inductively add all edges 
incident to any vertex with at least 5/9-fraction of its edges in boundary.  


Polymers are connected components of the boundary



w(γ) = qc′ (γ)(eβ − 1)−|Eu(γ)|



Consequences

For q large, ordered and disordered cluster expansions converge in 
overlapping range of .  


Convergent cluster expansion gives properties like exponential decay of 
correlations, large deviation bounds, CLT’s…


This also gives algorithms at all temperatures.

β



Open questions
Prove that for the random cluster model on random d-regular graphs, 




Extend the current results to all  (more refined def of ordered polymers)


Apply the second-moment method / cavity method to the random cluster model 


Give sampling/counting algorithms for hard-core on random bipartite graphs for 
all 


Other applications of polymer models and cluster expansion in probabilistic 
combinatorics

βc = log
q − 2

(q − 1)1−2/d − 1

d ≥ 3

λ



Thank you!


