Finite-size scaling for the random cluster model on random graphs

Will Perkins
UIC

joint w/ Tyler Helmuth (Durham) & Matthew Jenssen (Birmingham)

Spin models on random graphs

Study statistical physics spin models on random graphs

Great source of examples and counterexamples in combinatorics

For probabilists, random graphs have non-trivial geometry but may be tractable due to connection with infinite trees (Bethe lattice)

A source of hard computational problems and gadgets in hardness reductions

Potts model

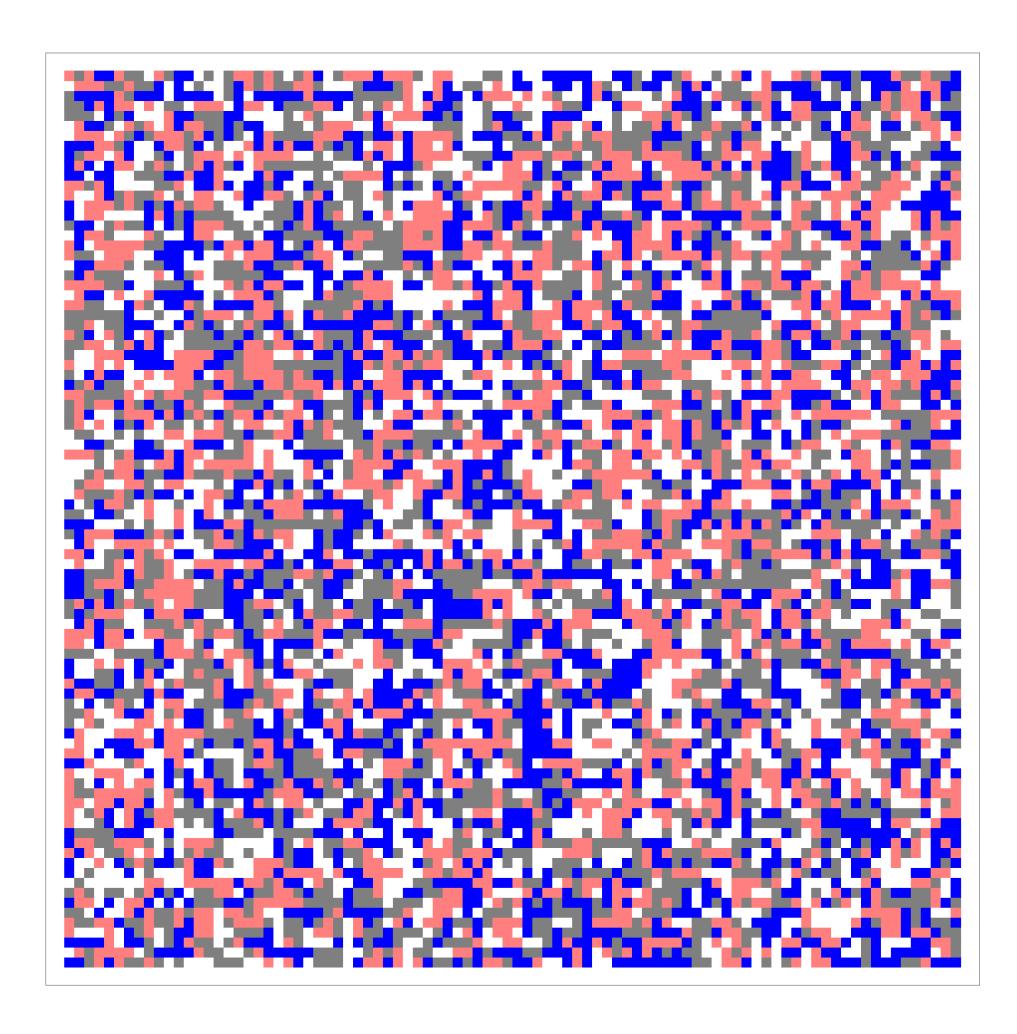
Probability distribution on assignments of q colors to vertices of G:

$$\mu_G^{\text{Potts}}(\sigma) = \frac{e^{\beta M(G,\sigma)}}{Z_G^{\text{Potts}}(q,\beta)} \qquad Z_G^{\text{Potts}}(q,\beta) = \sum_{\sigma} e^{\beta M(G,\sigma)}$$

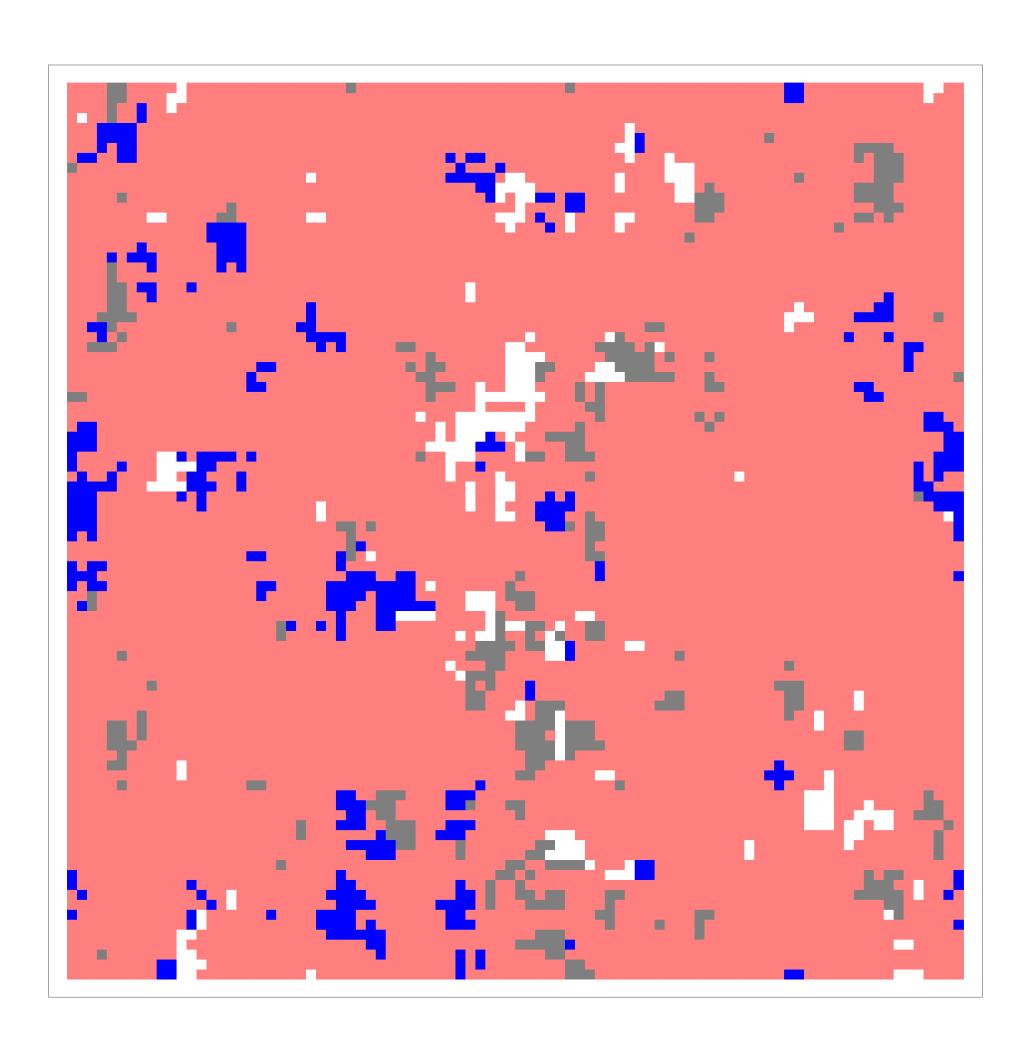
where $M(G, \sigma)$ is the number of monochromatic edges.

Inverse temperature $\beta > 0$ is the ferromagnetic case, $\beta < 0$ is antiferromagnetic.

Potts model



High temperature (β small)



Low temperature (β large)

Techniques to study spin models

In combinatorics: first and second-moment methods, Azuma's inequality, Chernoff bounds, Friedgut...

Give decent answers but fall short of pinning down thresholds (q-coloring threshold of G(n,p) still open!)

Non-rigorous cavity method from statistical physics predicts precise thresholds and structural changes (shattering, condensation,...).

Main objects: Belief propagation, Bethe formula, replica symmetry breaking

Many aspects of the cavity method have now been made rigorous: BP-inspired 2nd moment; interpolation method; Coja-Oghlan, Ding-Sly-Sun, Mossel-Neeman-Sly..

Our technique

Abstract polymer models and the cluster expansion

Classical technique from statistical physics: used e.g. by Laanait-Messager-Miracle-Sole-Ruiz-Shlosman to understand the large-q 1st order phase transition for Potts on \mathbb{Z}^d

Used recently in algorithms: joint w/ Helmuth-P.-Regts, Jenssen-Keevash-P., Borgs-Chayes-Helmuth-P.-Tetali

Used recently in combinatorics: Jenssen-P., Balogh-Garcia-Li, Davies-Jenssen-P., Jenssen-Keevash (talks on the "Big Seminar" youtube channel)

Write a partition function in terms of defects from a ground state (polymers)

Express the log partition function as an infinite series (sum over clusters)

Potts model on random graphs

Ferromagnetic Potts: always replica symmetric, q ground states

Antiferromagnetic Potts: replica symmetry breaking, information-computation gap

Potts on Random Graphs

Ferromagnetic Potts model on random d-regular graphs (Galanis-Stefankovic-Vigoda-Yang; also Dembo-Montanari-Sly-Sun):

Let
$$\beta_c(q, d) = \log \frac{q - 1}{(q - 1)^{1 - 2/d} - 1}$$

For $\beta < \beta_c$, there is a disordered phase (marginals close to uniform whp)

For $\beta > \beta_c$, there are **q ordered phases** (marginals favor one dominant color)

For $\beta = \beta_c$, the q+1 phases each have at least $1/n^c$ probability (weak phase coexistence)

Good understanding of the free energy: $\lim_{n\to\infty}\frac{1}{n}\mathbb{E}\log Z_n$

Potts on Random Graphs

What precisely happens at $\beta = \beta_c$? (phase coexistence)

What is the distribution of $\log Z_n$? (finite-size scaling)

How do correlations behave? (exponential decay of correlations?)

What is the local spin distribution? (local weak convergence)

We can answer all of these questions in detail when q=q(d) is large. More generally, we do so for the random cluster model.

Random cluster model

Probability distribution on subsets of edges of G.

$$\mu_G(A) = \frac{q^{c(A)}(e^{\beta} - 1)^{|A|}}{Z_G(q, \beta)} \qquad Z_G(q, \beta) = \sum_{A \subseteq E} q^{c(A)}(e^{\beta} - 1)^{|A|}$$

where c(A) is the number of connected components of (V, A).

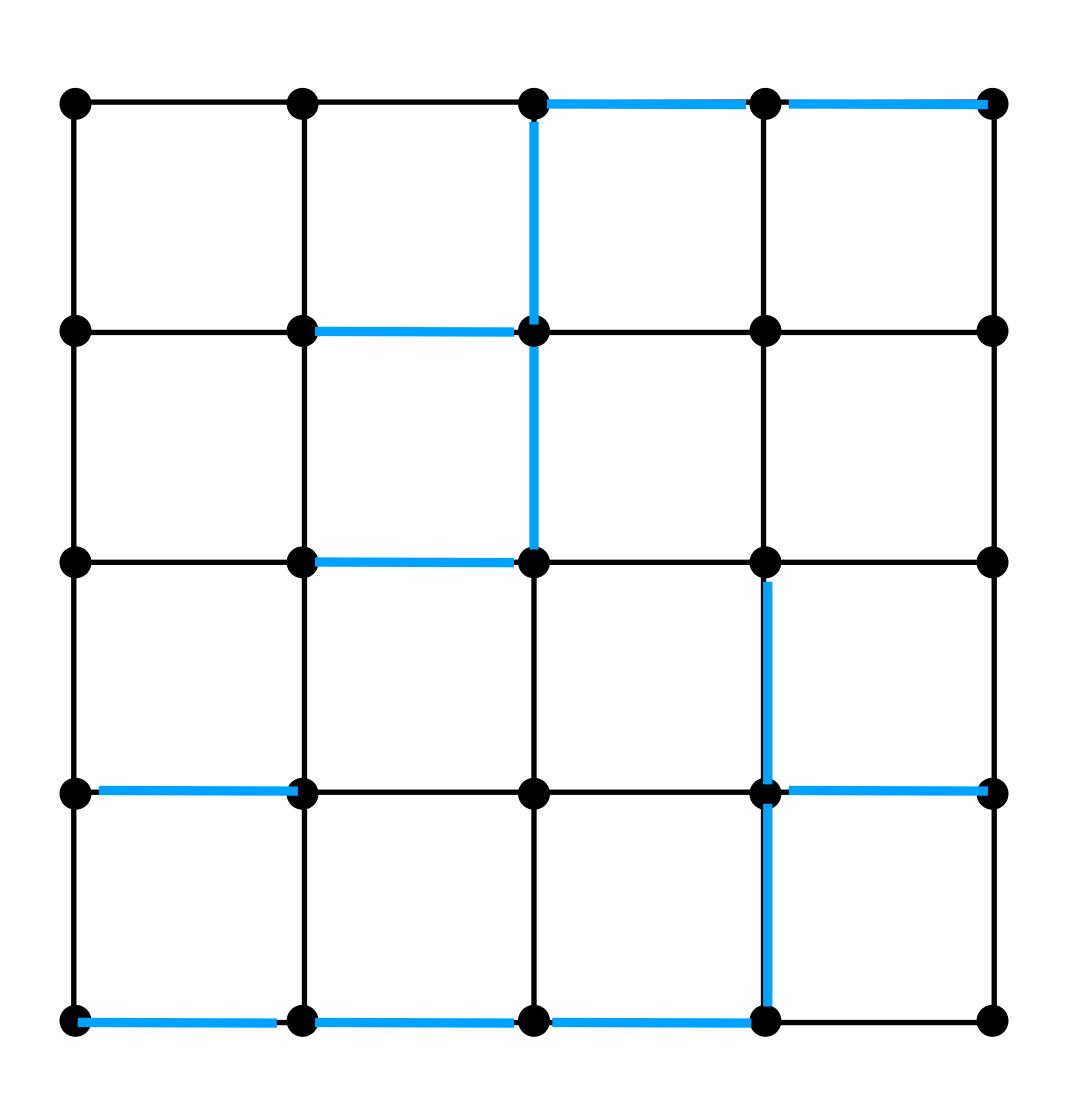
Two possible ground states: disordered $A=\varnothing$, ordered A=E.

$$q > 0$$
 real

Edwards-Sokal coupling

$$Z_G^{\text{Potts}}(q,\beta) = Z_G(q,\beta)$$

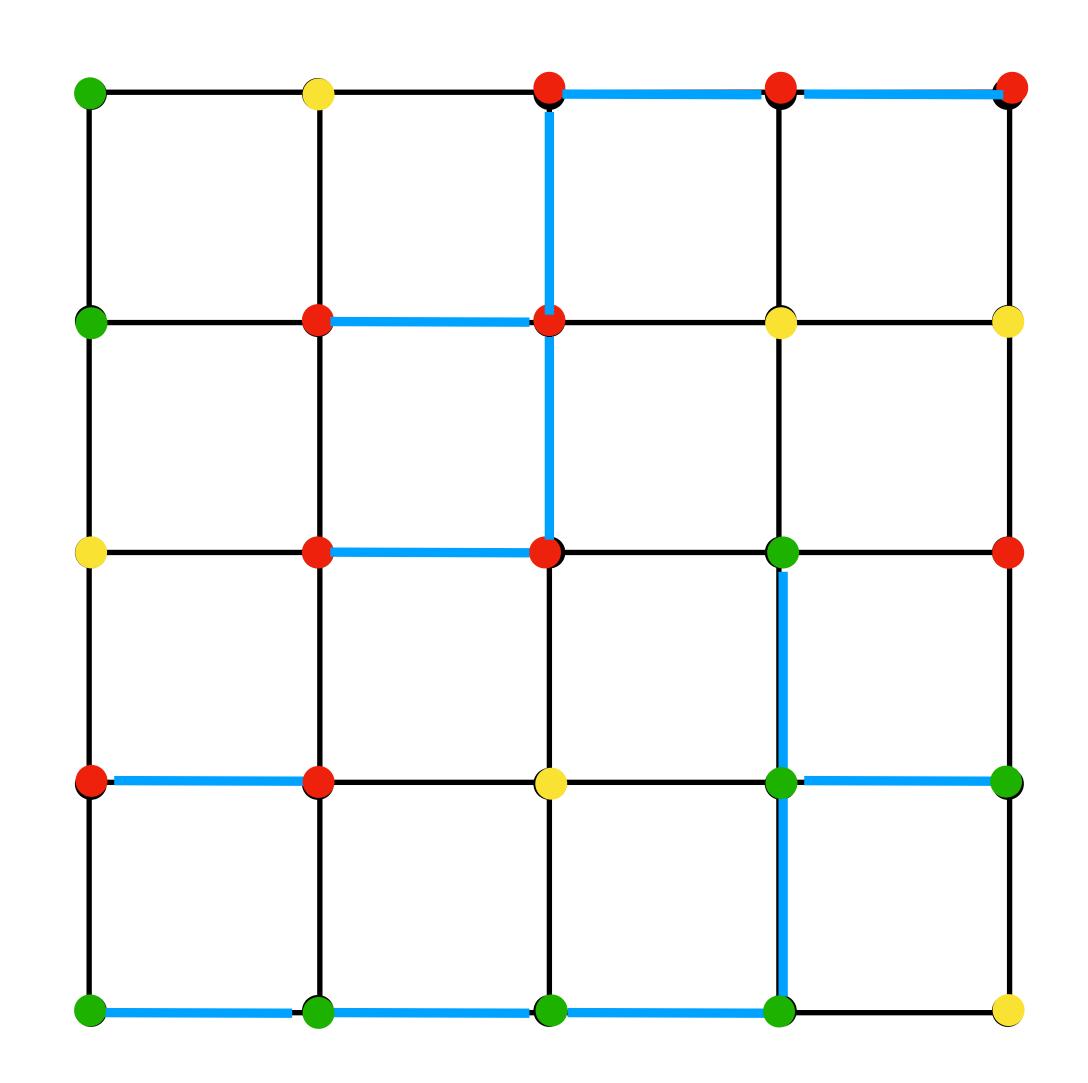
- 1. Pick a set of edges according to the random cluster measure
- 2. Determine the connected components



Edwards-Sokal coupling

$$Z_G^{\text{Potts}}(q,\beta) = Z_G(q,\beta)$$

- 1. Pick a set of edges according to the random cluster measure
- 2. Determine the connected components
- 3. Assign one of the q colors uniformly and independently to each connected component



Main results

Thm. For $d \ge 5$ and q = q(d) large enough, there exists $\beta_c(q, d)$ so that:

- 1. For $\beta \neq \beta_c$ the free energy is analytic and μ_n exhibits exponential decay of correlations whp.
- 2. μ_n converges locally to $\mu_{\rm free}$ and $\mu_{\rm wire}$ for $\beta < \beta_c$ and $\beta > \beta_c$ respectively
- 3. The relative weights of the ordered and disordered states at $\beta=\beta_c$ converge to given random variables (a function of small cycle counts). μ_n converges locally to a mixture of $\mu_{\rm free}$ and $\mu_{\rm wire}$

Main results

Thm. For $d \ge 5$, q = q(d) large enough, and **all** β there is an **FPTAS** and **efficient sampling algorithm** for the random cluster model on d-regular random graphs.

Algorithms work subject to expansion conditions that hold whp and can be checked efficiently.

Step 1: almost all or nothing

Use **expansion properties** to show that for q large, with probability $1 - \exp(-\Theta(n))$ a sample from the RC model consists of **at least .9** or **at most .1** fraction of edges. (Not hard)

Write
$$Z = Z_{dis} + Z_{ord} + Z_{err}$$

Suffices to understand Z_{dis} and Z_{ord} , and μ_{dis} and μ_{ord}

Polymer models and cluster expansion

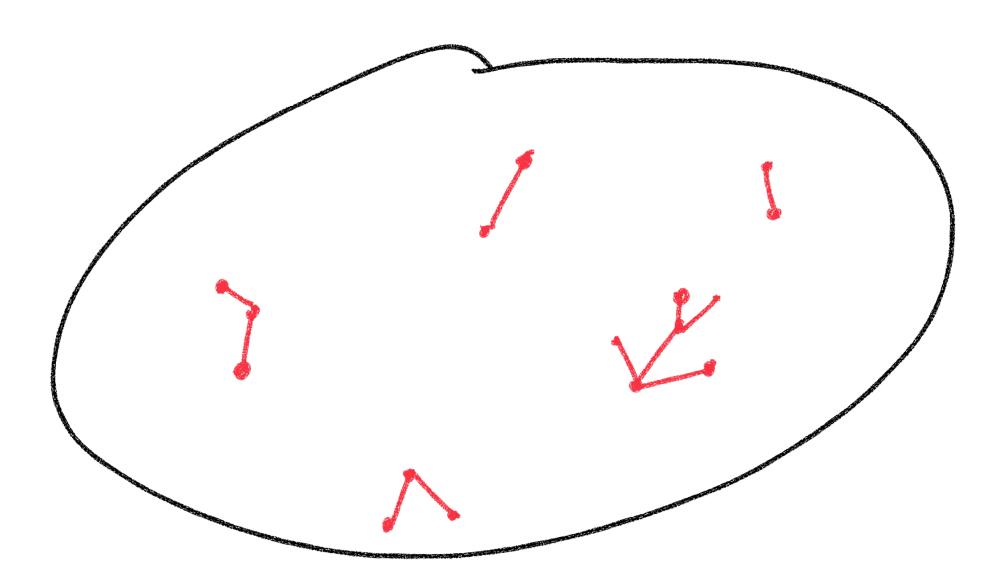
Rewrite partition function as a sum over collections of disjoint geometric objects (polymers) of product of polymer weights

If weights decay fast enough as a function of size, then the cluster expansion, a power series for log Z, converges

Weights must factorize and decay

Step 2: disordered

Express disordered configurations in terms of deviations from the empty configuration

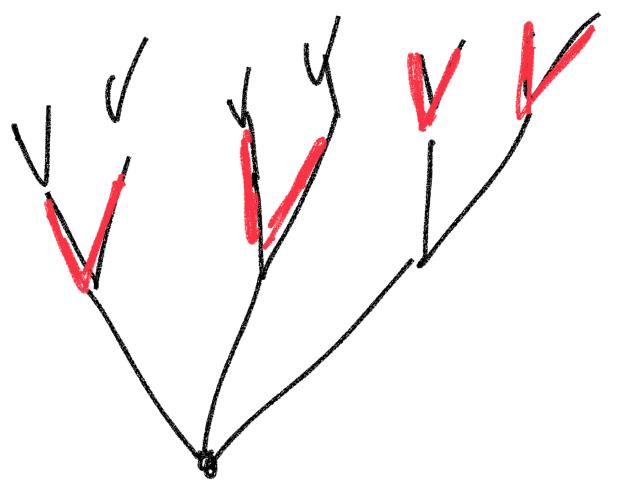


Polymers are connected components of occupied edges

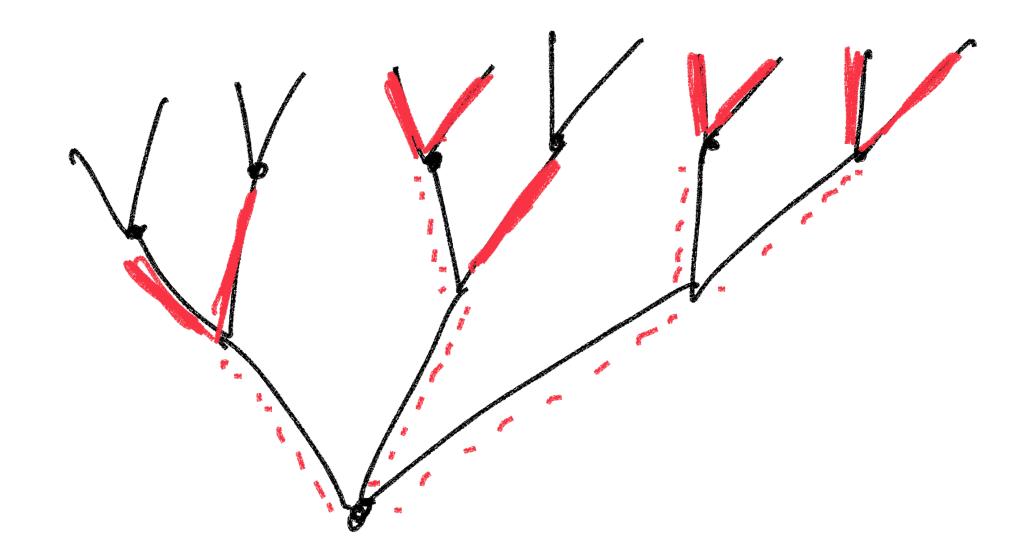
$$w(\gamma) = q^{1-|\gamma|} (e^{\beta} - 1)^{|E(\gamma)|}$$

Step 2: ordered

Express ordered configurations in terms of defects from the all-occupied configuration



Step 2: ordered



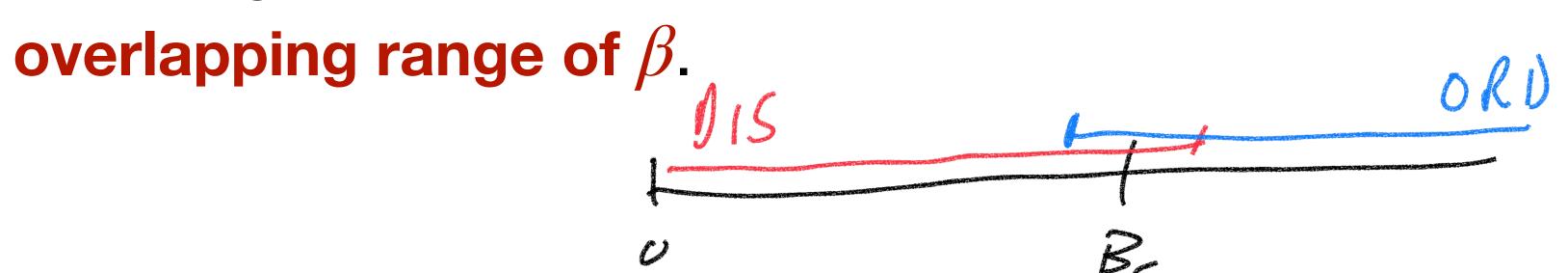
Define **boundary** by starting with unoccupied edges; inductively add all edges incident to any vertex with at least 5/9-fraction of its edges in boundary.

Polymers are connected components of the boundary

$$w(\gamma) = q^{c'(\gamma)} (e^{\beta} - 1)^{-|E_u(\gamma)|}$$

Consequences

For q large, ordered and disordered cluster expansions converge in



Convergent cluster expansion gives properties like exponential decay of correlations, large deviation bounds, CLT's...

This also gives algorithms at all temperatures.

Open questions

Prove that for the random cluster model on random d-regular graphs,

$$\beta_c = \log \frac{q - 2}{(q - 1)^{1 - 2/d} - 1}$$

Extend the current results to all $d \ge 3$ (more refined def of ordered polymers)

Apply the second-moment method / cavity method to the random cluster model

Give sampling/counting algorithms for hard-core on random bipartite graphs for all λ

Other applications of polymer models and cluster expansion in probabilistic combinatorics

Thank you!