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Independent set

This is a 4-uniform hypergraph
H on 8 vertices with 6 edges
(surfaces of the cube):

What is the maximum number
of vertices we can take such
that there’s no edge from which
we took all 4 of them?
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This is a 4-uniform hypergraph
H on 8 vertices with 6 edges
(surfaces of the cube):

What is the maximum number
of vertices we can take such
that there’s no edge from which
we took all 4 of them?

The answer is 6, so is the independence number of this hypergraph.



j-independent set

For the same hypergraph what is the maximum number of vertices
we can take such that there’s no edge from which we took more
than 2 vertices? More than 1?



j-independent set

For the same hypergraph what is the maximum number of vertices
we can take such that there’s no edge from which we took more
than 2 vertices? More than 1?

2-independence number of this
hypergraph is 4.

1-independence number of this
hypergraph is 2.



j-chromatic numbers

How many colors are needed to color vertices of hypergraph such
that every color is j-independent set?

χ3(H) = χ(H) = 2 χ2(H) = 2 χ1(H) = 4

weak strong



Definitions

I For an integer j , a j-independent set in a hypergraph
H(V ,E ) is a subset A ⊂ V such that for every edge
e ∈ E : |e ∩ A| 6 j ;

I A coloring of hypergraph H = (V ,E ) is called j-proper if
every color class is j-independent;

I The j-chromatic number χj(H) of hypergraph H = (V ,E ) is
the minimal number of colors in a j-proper coloring of H;

I In the case of k-uniform hypergraph χk−1(H) = χ(H);

I All chromatic numbers χj(H) with j > k/2 are called weak.



Binomial model

Let’s consider binomial model H(n, k, p) of a random hypergraph.

χ3(H) = 1

χ2(H) = 1

χ1(H) = 1
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Let’s consider binomial model H(n, k, p) of a random hypergraph.
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Binomial model

Let’s consider binomial model H(n, k, p) of a random hypergraph.

χ3(H) = 1 χ3(H) = 2 χ3(H) = 2 χ3(H) = 2 χ3(H) = 3

χ2(H) = 1 χ2(H) = 2 χ2(H) = 2 χ2(H) = 2 χ2(H) = 4

χ1(H) = 1 χ1(H) = 4 χ1(H) = 4 χ1(H) = 4 χ1(H) = 8

= dnj e



Constant probability

Let’s consider j and k are fixed while n tends to infinity. Also let’s
assume j < k − 1 and p ∈ (0, 1) is some constant.

I Let X be the number of subsets of j + 1 vertices that are not
contained in any edge of hypergraph H(n, k , p).

I Probability that a set of j + 1 vertices is not contained in any
edge of hypergraph H(n, k , p) equals

(1− p)(n−j−1
k−j−1).

I Therefore,

EX =

(
n

j + 1

)
(1− p)(n−j−1

k−j−1) → 0.

I Then χj(H(n, k , p)) = dnj e asymptotically almost surely
(a.a.s.).



Dense case

Let’s take 1 6 j 6 k − 1. Denote

d (j) = d (j)(n, p) = j

(
k − 1

j

)(
n − 1

k − 1

)
p.

I Shamir, 1989: d (j) > nj−ε, ε > 0 and d (j) = o(nj ln n);

I Krivelevich, Sudakov, 1998: d (j) = o(nj) and d (j) →∞;

χj(H(n, k , p)) ∼
P

(
d (j)

(j + 1) ln d (j)

)1/j

, n→∞.



Sparse case, arbitrary r , j = k − 1

Let’s now consider the case p = cn/
(n
k

)
.

I Theorem (Dyer, Frieze, Greenhill, 2015):
If c > rk−1 ln r − ln r

2 then a.a.s. χ(H(n, k , p)) > r .

I Theorem (Dyer, Frieze, Greenhill, 2015):

If c < rk−1 ln r − r−1
r (1 + ln r) + O(k

2 ln r
rk−1 ) then a.a.s.

χ(H(n, k , p)) 6 r .

I Theorem (Ayre, Coja-Oghlan, Greenhill, 2015):
For r > r0(k), if c < rk−1 ln r − ln r

2 − ln 2 + or (1) then a.a.s.
χ(H(n, k , p)) 6 r .

I Theorem (Shabanov, 2017):
For k > 4, if c < rk−1 ln r − ln r

2 −
r−1
r + or ,k(1) then a.a.s.

χ(H(n, k , p)) 6 r .



Sparse case, r = 2, j = k − 1

I Theorem (Coja-Oghlan, Panagiotou, 2012):
There exists εk = 2−k(1+ok (1)), such that if

c < 2k−1 ln 2− ln 2

2
− 1

4
− εk ,

then a.a.s. χ(H(n, k , p)) 6 2. On the other hand, if

c > 2k−1 ln 2− ln 2

2
− 1

4
+ εk

then a.a.s. χ(H(n, k , p)) > 2.



Sparse case, r = 2, k − j = o(
√
k)

I Theorem (Semenov, 2017):
There exist Cl , Cu and k0, such that if k > k0,
2 6 k − j = o(

√
k) and

c >
2k−1 ln 2∑k−j−1
s=0

(k
s

) − ln 2

2
+ Cu · kk−j−1 · 2−k ,

then a.a.s. χj (H (n, k , p)) > 2. On the other hand, if

c <
2k−1 ln 2∑k−j−1
s=0

(k
s

) − ln 2

2
− Cl · (k/8)j+1−k ,

then a.a.s. χj (H (n, k , p)) 6 2.



Sparse case, arbitrary r , k − j = o(k1/4)

I Theorem (Semenov, Shabanov, 2020): For any r > 2,
there exist Cl , Cu and k0 = k0(r), such that if k > k0,
2 6 k − j = o(k1/4) and

c >
rk−1 ln r∑k−j−1

s=0

(k
s

)
(r − 1)s

− ln r

2
+ Cu ·

(
k

j + 1

)
· r−j ,

then a.a.s. χj (H (n, k , p)) > r . On the other hand, if

c <
rk−1 ln r∑k−j−1

s=0

(k
s

)
(r − 1)s

− ln r

2
− Cl · k j−k+1,

then a.a.s. χj (H (n, k , p)) 6 r .



Proof (upper bound)

I Different model H1(n, k,m): we randomly choose m = dcne
edges with replacement from the set of all possible edges
(some edges may repeat); For c ′ > c and p′ = c ′n/

(n
k

)
P(χj(H1(n, k , dcne)) > r) 6 P(χj(H(n, k , p′) > r) + on(1).

I Counting proper colorings: let Xn be a random variable
corresponding to the number of j-proper colorings of
H1(n, k, dcne);

I First moment method:

P(Xn > 0) 6 EXn.



Proof (lower bound)

I Different model H2(n, k,m): we choose m = dcne
independent edges and in every edge choose k vertices also
randomly and independently (some edges may repeat and be
non-proper); For c ′ < c and p′ = c ′n/

(n
k

)
P(χj(H2(n, k , dcne)) 6 r) 6 P(χj(H(n, k , p′) 6 r) + on(1).

I Sharp threshold: Based on the result of Hatami and Molloy,
there exists a function p̂ = p̂(n) such that for every ε > 0,

P(χj(H(n, k , p)) 6 r)→

{
1, p < (1− ε)p̂;

0, p > (1 + ε)p̂.

Hence, we need to show that P(χj(H2(n, k,m) 6 r) is
bounded from zero.



Second moment method

I We can consider only the case of n divisible by r .

I Counting proper balanced colorings: let Xn be a random
variable corresponding to the number of j-proper balanced
colorings of H2(n, k , dcne), i.e. color classes are of size n/r ;

P(χj(H2(n, k , dcne)) 6 r) > P(Xn > 0);

I Second moment method: The Paley-Zygmund inequality
says that

P(Xn > 0) >
(EXn)2

EX 2
n

;

So, the final step is to show that EX 2
n = Ok((EXn)2).



Second moment calculation

I To calculate the second moment we use matrices A ∈ A of
size r by r with the property:

r∑
i=1

aiu = n/r ,
r∑

u=1

aiu = n/r .

I Let’s also denote Jr ∈ A as a matrix with entries that are all
the same and equal n/r2.



Helper functions

Then, we introduce functions:

H(A) = −
r∑

i ,u=1

aiu
n

ln
raiu
n

;

E(A) = ln

(
1− 2r1−k

k∑
s=j+1

(
k

s

)
(r − 1)k−s+

r∑
i ,u=1

k∑
s=j+1

(
k

s

) k−s∑
h=0

s−j−1+h∑
t=0

(
k − s

h

)(
s

t

)
·

( n
r − aiu

n

)h+t (aiu
n

)s−t ( n(r−2)
r + aiu

n

)k−h−s )
.



Crucial technical lemma

For c that satisfies conditions of the theorem, the expression
Gc(A) = H(A) + c · E(A) takes it’s minimum value when A = Jr .
Which comes from the following

Lemma: There exist b = b(k , r) > 0, such that for every
A = (aiu, i , u = 1, . . . , r) from A

Gc(A)− Gc(Jr ) > b
r∑

i ,u=1

(
aiu
n
− 1

r2

)2

.


