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Independent set

This is a 4-uniform hypergraph
H on 8 vertices with 6 edges
(surfaces of the cube):

What is the maximum number
of vertices we can take such
that there's no edge from which
we took all 4 of them?
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Independent set

This is a 4-uniform hypergraph
H on 8 vertices with 6 edges
(surfaces of the cube):

What is the maximum number
of vertices we can take such
that there's no edge from which
we took all 4 of them?

The answer is 6, so is the independence number of this hypergraph.



j-independent set

For the same hypergraph what is the maximum number of vertices
we can take such that there's no edge from which we took more
than 2 vertices? More than 1?7



j-independent set

For the same hypergraph what is the maximum number of vertices
we can take such that there's no edge from which we took more
than 2 vertices? More than 17

2-independence number of this
hypergraph is 4.

1-independence number of this
hypergraph is 2.




j-chromatic numbers

How many colors are needed to color vertices of hypergraph such
that every color is j-independent set?

x3(H) = x(H) =2 x2(H) =2 x1(H) =4

weak strong



Definitions

P> For an integer j, a j-independent set in a hypergraph
H(V,E) is a subset A C V such that for every edge
ecE:lenAl<;

» A coloring of hypergraph H = (V/, E) is called j-proper if
every color class is j-independent;

» The j-chromatic number x;(H) of hypergraph H = (V,E) is
the minimal number of colors in a j-proper coloring of H;

» In the case of k-uniform hypergraph xx—1(H) = x(H);

» All chromatic numbers x;(H) with j > k/2 are called weak.



Binomial model

Let's consider binomial model H(n, k, p) of a random hypergraph.
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Binomial model

Let's consider binomial model H(n, k, p) of a random hypergraph.




Constant probability

Let's consider j and k are fixed while n tends to infinity. Also let’s
assume j < k —1 and p € (0,1) is some constant.

>

>

Let X be the number of subsets of j + 1 vertices that are not
contained in any edge of hypergraph H(n, k, p).

Probability that a set of j + 1 vertices is not contained in any
edge of hypergraph H(n, k, p) equals

(1-— p)(ﬂ:j:i)

Therefore,
EX = (/:: 1) (1—p)im) S0,
Then x;(H(n, k,p)) = [Jﬂ} asymptotically almost surely

(a.a.s.).



Dense case

Let's take 1 < j < k — 1. Denote

: : k—1 n—1
) — 40) —
d d (n,p) _j( i ><k 1>p.

» Shamir, 1989: dU) > /== ¢ > 0 and dU) = o(r/ In n);
> Krivelevich, Sudakov, 1998: dU) = o(n/) and dU) — oo;

d0) 1
XJ(H(”»k,P))g (+1)indD ;N — o0.



Sparse case, arbitrary r, j = k — 1

Let's now consider the case p = cn/ (Z)

» Theorem (Dyer, Frieze, Greenhill, 2015):
If ¢ > r*Tinr — 97 then a.a.s. x(H(n, k,p)) > r

» Theorem (Dyer, Frleze, Greenhill, 2015)'
If c < rk=Linr— = 1(1+Inr)+O(k Inr) then a.a.s.
x(H(n, k,p)) < r

» Theorem (Ayre, Coja-Oghlan, Greenhill, 2015):
For r > ro(k), if c < r*"tinr — 37 — In2 + o,(1) then a.a.s.
x(H(n, k; p)) <

» Theorem (Shabanov 2017):
For k > 4, if c < rk inrp—1or — =1 4 6, (1) then a.ass.

x(H(n, k; p)) <




Sparse case, r =2, j =k —1

» Theorem (Coja-Oghlan, Panagiotou, 2012):
There exists ¢, = 2~ k(1+(1)) sych that if

c<2ktin2 - == -2 ¢,

then a.a.s. x(H(n, k,p)) > 2.



Sparse case, r =2, k — j = o(\Vk)

» Theorem (Semenov, 2017):
There exist C;, C, and kg, such that if kK > kg,
2 < k—j=o(vk) and

2k=1in2 In?2
k—j—1 rk
STl 2

then a.a.s. x;(H (n, k,p)) > 2. On the other hand, if

c> + C, - kK7 o7k,

2k-11n2 In2
<k—-1/ky o
Yoo (o) 2
then a.ass. x;(H (n, k,p)) < 2.

c< — - (k/8y Tk



Sparse case, arbitrary r, k — j = o(k*/%)

» Theorem (Semenov, Shabanov, 2020): For any r > 2,
there exist C;, C, and kg = ko(r), such that if k > ko,
2 < k—j=o(k"*) and

- rklinr Inr+C <Jk ) _
. - — . cr,
ST H-y 2 T UL

s=0

then a.a.s. x; (H(n, k,p)) > r. On the other hand, if

< rk=Yinr Inr
k—j—1 T Ty
Yep (D=1 2

then a.ass. xj(H(n, k,p)) <r.

j—k+1
— G- K ,




Proof (upper bound)

» Different model H;(n, k, m): we randomly choose m = [cn]
edges with replacement from the set of all possible edges
(some edges may repeat); For ¢’ > ¢ and p' = c¢'n/(})

P(xj(H1(n, k, [en])) > r) < P(xj(H(n k. p') > r) + on(1).

» Counting proper colorings: let X, be a random variable
corresponding to the number of j-proper colorings of

Hi(n, k, [cn);
» First moment method:

P(X, > 0) < EX,.



Proof (lower bound)

» Different model H(n, k, m): we choose m = [cn|
independent edges and in every edge choose k vertices also
randomly and independently (some edges may repeat and be
non-proper); For ¢ < c and p' = ¢/n/(})

P(xj(Ha(n, k, [en])) < r) < P(xi(H(n, k. p') < r) + on(1).

» Sharp threshold: Based on the result of Hatami and Molloy,
there exists a function p = p(n) such that for every ¢ > 0,

L, p<(l-¢)p;

POG(H(m k. p) < 1) = {0’ o

Hence, we need to show that P(x;(H2(n, k,m) < r) is
bounded from zero.



Second moment method

» We can consider only the case of n divisible by r.

» Counting proper balanced colorings: let X, be a random
variable corresponding to the number of j-proper balanced
colorings of Hp(n, k, [cn]), i.e. color classes are of size n/r;

P(xj(Ha(n, k, [en)) < r) = P(Xp > 0);

> Second moment method: The Paley-Zygmund inequality

says that
EXn)?
EXZ '

So, the final step is to show that EX? = Ok((EX,)?).

P(X, > 0) > (




Second moment calculation

» To calculate the second moment we use matrices A € A of
size r by r with the property:

r r
Za,-u = n/r,Za,-u =n/r.
i=1 u=1

> Let's also denote J, € A as a matrix with entries that are all
the same and equal n/r2.



Helper functions

Then, we introduce functions:

H(A):—Zr_: 2 B
5(A):|n< kzo v
55050

i,u=1s=j+1

_ k—h—s
g _ aiu h+t (ﬂ)s_t M + a’-u
n n n ’



Crucial technical lemma

For c that satisfies conditions of the theorem, the expression
Gc(A) = H(A) + ¢ - E(A) takes it's minimum value when A = J,.
Which comes from the following

Lemma: There exist b = b(k, r) > 0, such that for every
A= (ajy,i,u=1,...,r) from A

GoA)~ Gl )2 b Y <a - 1)2.

, n r2
i,u=1



