Probability thresholds estimates for coloring properties of random hypergraphs

Alexander Semenov
joint work with D. Shabanov
Probabilistic Combinatorics Online

25th September 2020

Independent set

This is a 4-uniform hypergraph H on 8 vertices with 6 edges (surfaces of the cube):

What is the maximum number of vertices we can take such that there's no edge from which we took all 4 of them?

Independent set

This is a 4-uniform hypergraph H on 8 vertices with 6 edges (surfaces of the cube):

What is the maximum number of vertices we can take such that there's no edge from which we took all 4 of them?

The answer is 6 , so is the independence number of this hypergraph.

j-independent set

For the same hypergraph what is the maximum number of vertices we can take such that there's no edge from which we took more than 2 vertices? More than 1 ?

j-independent set

For the same hypergraph what is the maximum number of vertices we can take such that there's no edge from which we took more than 2 vertices? More than 1 ?

2-independence number of this hypergraph is 4.

1-independence number of this hypergraph is 2 .

j-chromatic numbers

How many colors are needed to color vertices of hypergraph such that every color is j-independent set?

Definitions

- For an integer j, a j-independent set in a hypergraph $H(V, E)$ is a subset $A \subset V$ such that for every edge $e \in E:|e \cap A| \leqslant j$;
- A coloring of hypergraph $H=(V, E)$ is called j-proper if every color class is j-independent;
- The j-chromatic number $\chi_{j}(H)$ of hypergraph $H=(V, E)$ is the minimal number of colors in a j-proper coloring of H;
- In the case of k-uniform hypergraph $\chi_{k-1}(H)=\chi(H)$;
- All chromatic numbers $\chi_{j}(H)$ with $j \geqslant k / 2$ are called weak.

Binomial model

Let's consider binomial model $H(n, k, p)$ of a random hypergraph.
$\chi_{3}(H)=1$
$\chi_{2}(H)=1$
$\chi_{1}(H)=1$

Binomial model

Let's consider binomial model $H(n, k, p)$ of a random hypergraph.

$$
\begin{gathered}
\text { • • } \\
\chi_{3}(H)=1 \\
\chi_{2}(H)=1 \\
\chi_{3}(H)=2 \\
\chi_{1}(H)=1
\end{gathered}
$$

Binomial model

Let's consider binomial model $H(n, k, p)$ of a random hypergraph.

$$
\begin{array}{lll}
\text { • } \\
\chi_{3}(H)=1 & \chi_{3}(H)=2 & \chi_{3}(H)=2 \\
\chi_{2}(H)=1 & \chi_{2}(H)=2 & \chi_{2}(H)=2 \\
\chi_{1}(H)=1 & \chi_{1}(H)=4 & \chi_{1}(H)=4
\end{array}
$$

Binomial model

Let's consider binomial model $H(n, k, p)$ of a random hypergraph.

Binomial model

Let's consider binomial model $H(n, k, p)$ of a random hypergraph.

Constant probability

Let's consider j and k are fixed while n tends to infinity. Also let's assume $j<k-1$ and $p \in(0,1)$ is some constant.

- Let X be the number of subsets of $j+1$ vertices that are not contained in any edge of hypergraph $H(n, k, p)$.
- Probability that a set of $\mathrm{j}+1$ vertices is not contained in any edge of hypergraph $H(n, k, p)$ equals

$$
(1-p)^{\binom{n-j-1}{k-j-1}} .
$$

- Therefore,

$$
\mathrm{E} X=\binom{n}{j+1}(1-p)^{\binom{n-j-1}{k-j-1}} \rightarrow 0
$$

- Then $\chi_{j}(H(n, k, p))=\left\lceil\frac{n}{j}\right\rceil$ asymptotically almost surely (a.a.s.).

Dense case

Let's take $1 \leqslant j \leqslant k-1$. Denote

$$
d^{(j)}=d^{(j)}(n, p)=j\binom{k-1}{j}\binom{n-1}{k-1} p .
$$

- Shamir, 1989: $d^{(j)}>n^{j-\varepsilon}, \varepsilon>0$ and $d^{(j)}=o\left(n^{j} \ln n\right)$;
- Krivelevich, Sudakov, 1998: $d^{(j)}=o\left(n^{j}\right)$ and $d^{(j)} \rightarrow \infty$;

$$
\chi_{j}(H(n, k, p)) \underset{\mathrm{P}}{\sim}\left(\frac{d^{(j)}}{(j+1) \ln d^{(j)}}\right)^{1 / j}, \quad n \rightarrow \infty
$$

Sparse case, arbitrary $r, j=k-1$

Let's now consider the case $p=c n /\binom{n}{k}$.

- Theorem (Dyer, Frieze, Greenhill, 2015):

If $c>r^{k-1} \ln r-\frac{\ln r}{2}$ then a.a.s. $\chi(H(n, k, p))>r$.

- Theorem (Dyer, Frieze, Greenhill, 2015):

If $c<r^{k-1} \ln r-\frac{r-1}{r}(1+\ln r)+O\left(\frac{k^{2} \ln r}{r^{k-1}}\right)$ then a.a.s.
$\chi(H(n, k, p)) \leqslant r$.

- Theorem (Ayre, Coja-Oghlan, Greenhill, 2015):

For $r>r_{0}(k)$, if $c<r^{k-1} \ln r-\frac{\ln r}{2}-\ln 2+o_{r}(1)$ then a.a.s.
$\chi(H(n, k, p)) \leqslant r$.

- Theorem (Shabanov, 2017):

For $k \geqslant 4$, if $c<r^{k-1} \ln r-\frac{\ln r}{2}-\frac{r-1}{r}+o_{r, k}(1)$ then a.a.s.
$\chi(H(n, k, p)) \leqslant r$.

Sparse case, $r=2, j=k-1$

- Theorem (Coja-Oghlan, Panagiotou, 2012):

There exists $\varepsilon_{k}=2^{-k\left(1+o_{k}(1)\right)}$, such that if

$$
c<2^{k-1} \ln 2-\frac{\ln 2}{2}-\frac{1}{4}-\varepsilon_{k}
$$

then a.a.s. $\chi(H(n, k, p)) \leqslant 2$. On the other hand, if

$$
c>2^{k-1} \ln 2-\frac{\ln 2}{2}-\frac{1}{4}+\varepsilon_{k}
$$

then a.a.s. $\chi(H(n, k, p))>2$.

Sparse case, $r=2, k-j=o(\sqrt{k})$

- Theorem (Semenov, 2017):

There exist C_{1}, C_{u} and k_{0}, such that if $k>k_{0}$, $2 \leqslant k-j=o(\sqrt{k})$ and

$$
c>\frac{2^{k-1} \ln 2}{\sum_{s=0}^{k-j-1}\binom{k}{s}}-\frac{\ln 2}{2}+C_{u} \cdot k^{k-j-1} \cdot 2^{-k}
$$

then a.a.s. $\chi_{j}(H(n, k, p))>2$. On the other hand, if

$$
c<\frac{2^{k-1} \ln 2}{\sum_{s=0}^{k-j-1}\binom{k}{s}}-\frac{\ln 2}{2}-C_{l} \cdot(k / 8)^{j+1-k},
$$

then a.a.s. $\chi_{j}(H(n, k, p)) \leqslant 2$.

Sparse case, arbitrary $r, k-j=o\left(k^{1 / 4}\right)$

- Theorem (Semenov, Shabanov, 2020): For any $r>2$, there exist C_{l}, C_{u} and $k_{0}=k_{0}(r)$, such that if $k>k_{0}$, $2 \leqslant k-j=o\left(k^{1 / 4}\right)$ and

$$
c>\frac{r^{k-1} \ln r}{\sum_{s=0}^{k-j-1}\binom{k}{s}(r-1)^{s}}-\frac{\ln r}{2}+C_{u} \cdot\binom{k}{j+1} \cdot r^{-j},
$$

then a.a.s. $\chi_{j}(H(n, k, p))>r$. On the other hand, if

$$
c<\frac{r^{k-1} \ln r}{\sum_{s=0}^{k-j-1}\binom{k}{s}(r-1)^{s}}-\frac{\ln r}{2}-C_{l} \cdot k^{j-k+1}
$$

then a.a.s. $\chi_{j}(H(n, k, p)) \leqslant r$.

Proof (upper bound)

- Different model $H_{1}(n, k, m)$: we randomly choose $m=\lceil c n\rceil$ edges with replacement from the set of all possible edges (some edges may repeat); For $c^{\prime}>c$ and $p^{\prime}=c^{\prime} n /\binom{n}{k}$

$$
\mathrm{P}\left(\chi_{j}\left(H_{1}(n, k,\lceil c n\rceil)\right)>r\right) \leqslant \mathrm{P}\left(\chi_{j}\left(H\left(n, k, p^{\prime}\right)>r\right)+o_{n}(1) .\right.
$$

- Counting proper colorings: let X_{n} be a random variable corresponding to the number of j-proper colorings of $H_{1}(n, k,\lceil c n\rceil)$;
- First moment method:

$$
\mathrm{P}\left(X_{n}>0\right) \leqslant \mathrm{E} X_{n} .
$$

Proof (lower bound)

- Different model $H_{2}(n, k, m)$: we choose $m=\lceil c n\rceil$ independent edges and in every edge choose k vertices also randomly and independently (some edges may repeat and be non-proper); For $c^{\prime}<c$ and $p^{\prime}=c^{\prime} n /\binom{n}{k}$

$$
\mathrm{P}\left(\chi_{j}\left(H_{2}(n, k,\lceil c n\rceil)\right) \leqslant r\right) \leqslant \mathrm{P}\left(\chi_{j}\left(H\left(n, k, p^{\prime}\right) \leqslant r\right)+o_{n}(1)\right.
$$

- Sharp threshold: Based on the result of Hatami and Molloy, there exists a function $\hat{p}=\hat{p}(n)$ such that for every $\varepsilon>0$,

$$
\mathrm{P}\left(\chi_{j}(H(n, k, p)) \leqslant r\right) \rightarrow \begin{cases}1, & p<(1-\varepsilon) \hat{p} \\ 0, & p>(1+\varepsilon) \hat{p}\end{cases}
$$

Hence, we need to show that $\mathrm{P}\left(\chi_{j}\left(H_{2}(n, k, m) \leqslant r\right)\right.$ is bounded from zero.

Second moment method

- We can consider only the case of n divisible by r.
- Counting proper balanced colorings: let X_{n} be a random variable corresponding to the number of j-proper balanced colorings of $H_{2}(n, k,\lceil c n\rceil)$, i.e. color classes are of size n / r;

$$
\mathrm{P}\left(\chi_{j}\left(H_{2}(n, k,\lceil c n\rceil)\right) \leqslant r\right) \geqslant \mathrm{P}\left(X_{n}>0\right) ;
$$

- Second moment method: The Paley-Zygmund inequality says that

$$
\mathrm{P}\left(X_{n}>0\right) \geqslant \frac{\left(\mathrm{E} X_{n}\right)^{2}}{\mathrm{E} X_{n}^{2}}
$$

So, the final step is to show that $\mathrm{E} X_{n}^{2}=O_{k}\left(\left(\mathrm{E} X_{n}\right)^{2}\right)$.

Second moment calculation

- To calculate the second moment we use matrices $A \in \mathcal{A}$ of size r by r with the property:

$$
\sum_{i=1}^{r} a_{i u}=n / r, \sum_{u=1}^{r} a_{i u}=n / r
$$

- Let's also denote $J_{r} \in \mathcal{A}$ as a matrix with entries that are all the same and equal n / r^{2}.

Helper functions

Then, we introduce functions:

$$
\begin{gathered}
\mathcal{H}(A)=-\sum_{i, u=1}^{r} \frac{a_{i u}}{n} \ln \frac{r a_{i u}}{n} ; \\
\mathcal{E}(A)= \\
\ln \left(1-2 r^{1-k} \sum_{s=j+1}^{k}\binom{k}{s}(r-1)^{k-s}+\right. \\
\\
\sum_{i, u=1}^{r} \sum_{s=j+1}^{k}\binom{k}{s} \sum_{h=0}^{k-s} \sum_{t=0}^{s-j-1+h}\binom{k-s}{h}\binom{s}{t} . \\
\\
\left.\left(\frac{\frac{n}{r}-a_{i u}}{n}\right)^{h+t}\left(\frac{a_{i u}}{n}\right)^{s-t}\left(\frac{\frac{n(r-2)}{r}+a_{i u}}{n}\right)^{k-h-s}\right) .
\end{gathered}
$$

Crucial technical lemma

For c that satisfies conditions of the theorem, the expression $\mathcal{G}_{c}(A)=\mathcal{H}(A)+c \cdot \mathcal{E}(A)$ takes it's minimum value when $A=J_{r}$. Which comes from the following

Lemma: There exist $b=b(k, r)>0$, such that for every $A=\left(a_{i u}, i, u=1, \ldots, r\right)$ from \mathcal{A}

$$
\mathcal{G}_{c}(A)-\mathcal{G}_{c}\left(J_{r}\right) \geqslant b \sum_{i, u=1}^{r}\left(\frac{a_{i u}}{n}-\frac{1}{r^{2}}\right)^{2} .
$$

